Learning to Learn with Variational Information Bottleneck for Domain Generalization

被引:103
作者
Du, Yingjun [1 ]
Xu, Jun [2 ]
Xiong, Huan [4 ]
Qiu, Qiang [5 ]
Zhen, Xiantong [1 ,3 ]
Snoek, Cees G. M. [1 ]
Shao, Ling [3 ,4 ]
机构
[1] Univ Amsterdam, AIM Lab, Amsterdam, Netherlands
[2] Nankai Univ, Coll Comp Sci, Tianjin, Peoples R China
[3] Incept Inst Artificial Intelligence, Abu Dhabi, U Arab Emirates
[4] Mohamed Bin Zayed Univ Artificial Intelligence, Abu Dhabi, U Arab Emirates
[5] Duke Univ, Elect & Comp Engn, Durham, NC USA
来源
COMPUTER VISION - ECCV 2020, PT X | 2020年 / 12355卷
关键词
Meta learning; Domain generalization; Variational inference; Information bottleneck;
D O I
10.1007/978-3-030-58607-2_12
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Domain generalization models learn to generalize to previously unseen domains, but suffer from prediction uncertainty and domain shift. In this paper, we address both problems. We introduce a probabilistic meta-learning model for domain generalization, in which classifier parameters shared across domains are modeled as distributions. This enables better handling of prediction uncertainty on unseen domains. To deal with domain shift, we learn domain-invariant representations by the proposed principle of meta variational information bottleneck, we call MetaVIB. MetaVIB is derived from novel variational bounds of mutual information, by leveraging the meta-learning setting of domain generalization. Through episodic training, MetaVIB learns to gradually narrow domain gaps to establish domain-invariant representations, while simultaneously maximizing prediction accuracy. We conduct experiments on three benchmarks for cross-domain visual recognition. Comprehensive ablation studies validate the benefits of MetaVIB for domain generalization. The comparison results demonstrate our method outperforms previous approaches consistently.
引用
收藏
页码:200 / 216
页数:17
相关论文
共 53 条
[1]  
Alemi A. A., 2017, ICLR, DOI 10.48550/arXiv.1612.00410
[2]   Learning Representations for Neural Network-Based Classification Using the Information Bottleneck Principle [J].
Amjad, Rana Ali ;
Geiger, Bernhard C. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2020, 42 (09) :2225-2239
[3]  
Andrychowicz M, 2016, ADV NEUR IN, V29
[4]  
[Anonymous], 2011, Advances in Neural Information Processing Systems
[5]  
Balaji Y, 2018, ADV NEUR IN, V31
[6]  
Bertinetto L, 2016, ADV NEUR IN, V29
[7]  
Bin Peng X, 2020, Arxiv, DOI arXiv:1810.00821
[8]  
Bousmalis K, 2016, ADV NEUR IN, V29
[9]   Domain Generalization by Solving Jigsaw Puzzles [J].
Carlucci, Fabio M. ;
D'Innocente, Antonio ;
Bucci, Silvia ;
Caputo, Barbara ;
Tommasi, Tatiana .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :2224-2233
[10]   Exploiting Hierarchical Context on a Large Database of Object Categories [J].
Choi, Myung Jin ;
Lim, Joseph J. ;
Torralba, Antonio ;
Willsky, Alan S. .
2010 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2010, :129-136