Determination of lung cancer exhaled breath biomarkers using machine learning-a new analysis framework

被引:0
作者
Setlhare, Tlotlo Cassandra [1 ]
Mpolokang, Atlang Gild [1 ]
Flahaut, Emmanuel [2 ]
Chimowa, George [1 ]
机构
[1] Botswana Int Univ Sci & Technol, Dept Phys & Astron, Private Bag 16,Boseja Ward, Palapye, Botswana
[2] Univ Toulouse, CIRIMAT, Toulouse INP, CNR, 118 Route Narbonne, F-31062 Toulouse 9, France
来源
SCIENTIFIC REPORTS | 2025年 / 15卷 / 01期
关键词
VOLATILE ORGANIC-COMPOUNDS; MARKERS; DIAGNOSIS; ALDEHYDES;
D O I
10.1038/s41598-025-11365-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Exhaled breath samples of lung cancer patients (LC), tuberculosis (TB) patients and asymptomatic controls (C) were analyzed using gas chromatography-mass spectrometry (GC-MS). Ten volatile organic compounds (VOCs) were identified as possible biomarkers after confounders were statistically eliminated to enhance biomarker specificity. The diagnostic potential of these possible biomarkers was evaluated using multiple machine learning models and their performance for classifying patients and controls was compared. Partial least squares-discriminant analysis (PLS-DA) emerged as the best-performing model for separating lung cancer from controls, with a recall (sensitivity) of 82%, precision of 90%, accuracy of 80% and F1-score of 86%. To further validate this model, TB data was introduced as a confounding disease, and the model achieved precision, recall, accuracy and F1-score of 88% each, in distinguishing lung cancer from TB. These findings address the inter-disease variability and underscores the reliability of the reported VOCs as potential biomarkers of lung cancer. This study establishes a new framework integrating machine learning and confounder elimination for biomarker confirmation.
引用
收藏
页数:12
相关论文
共 59 条
[1]  
[Anonymous], 2023, Key statistics for lung cancer
[2]   Noninvasive detection of lung cancer by analysis of exhaled breath [J].
Bajtarevic, Amel ;
Ager, Clemens ;
Pienz, Martin ;
Klieber, Martin ;
Schwarz, Konrad ;
Ligor, Magdalena ;
Ligor, Tomasz ;
Filipiak, Wojciech ;
Denz, Hubert ;
Fiegl, Michael ;
Hilbe, Wolfgang ;
Weiss, Wolfgang ;
Lukas, Peter ;
Jamnig, Herbert ;
Hackl, Martin ;
Haidenberger, Alfred ;
Buszewski, Boguslaw ;
Miekisch, Wolfram ;
Schubert, Jochen ;
Amann, Anton .
BMC CANCER, 2009, 9 :348
[3]   On the use of Tedlar® bags for breath-gas sampling and analysis [J].
Beauchamp, Jonathan ;
Herbig, Jens ;
Gutmann, Rene ;
Hansel, Armin .
JOURNAL OF BREATH RESEARCH, 2008, 2 (04)
[4]   A performance comparison between shallow and deeper neural networks supervised classification of tomosynthesis breast lesions images [J].
Bevilacqua, Vitoantonio ;
Brunetti, Antonio ;
Guerriero, Andrea ;
Trotta, Gianpaolo Francesco ;
Telegrafo, Michele ;
Moschetta, Marco .
COGNITIVE SYSTEMS RESEARCH, 2019, 53 :3-19
[5]   Factors that influence the volatile organic compound content in human breath [J].
Blanchet, L. ;
Smolinska, A. ;
Baranska, A. ;
Tigchelaar, E. ;
Swertz, M. ;
Zhernakova, A. ;
Dallinga, J. W. ;
Wijmenga, C. ;
van Schooten, F. J. .
JOURNAL OF BREATH RESEARCH, 2017, 11 (01)
[6]   A Machine Learning and Radiomics Approach in Lung Cancer for Predicting Histological Subtype [J].
Brunetti, Antonio ;
Altini, Nicola ;
Buongiorno, Domenico ;
Garolla, Emilio ;
Corallo, Fabio ;
Gravina, Matteo ;
Bevilacqua, Vitoantonio ;
Prencipe, Berardino .
APPLIED SCIENCES-BASEL, 2022, 12 (12)
[7]   Association of Smoking with Metabolic Volatile Organic Compounds in Exhaled Breath [J].
Chen, Xing ;
Wang, Fuyuan ;
Lin, Liquan ;
Dong, Hao ;
Huang, Feifei ;
Muhammad, Kanhar Ghulam ;
Chen, Liying ;
Gorlova, Olga Y. .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2017, 18 (11)
[8]   Variable VOCs in plastic culture flasks and their potential impact on cell volatile biomarkers [J].
Chu, Yajing ;
Zhou, Jijuan ;
Ge, Dianlong ;
Lu, Yan ;
Zou, Xue ;
Xia, Lei ;
Huang, Chaoqun ;
Shen, Chengyin ;
Chu, Yannan .
ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2020, 412 (22) :5397-5408
[9]   Exhaled breath analysis in suspected cases of non-small-cell lung cancer: a cross-sectional study [J].
Corradi, M. ;
Poli, D. ;
Banda, I. ;
Bonini, S. ;
Mozzoni, P. ;
Pinelli, S. ;
Alinovi, R. ;
Andreoli, R. ;
Ampollini, L. ;
Casalini, A. ;
Carbognani, P. ;
Goldoni, M. ;
Mutti, A. .
JOURNAL OF BREATH RESEARCH, 2015, 9 (02)
[10]   A Computer-Aided Pipeline for Automatic Lung Cancer Classification on Computed Tomography Scans [J].
Dandil, Emre .
JOURNAL OF HEALTHCARE ENGINEERING, 2018, 2018