Compactness of Composition Operators on the Bergman Space of the Bidisc

被引:0
作者
Clos, Timothy G. [1 ]
Cuckovic, Zeljko [2 ]
Sahutoglu, Sonmez [2 ]
机构
[1] Kent State Univ, Dept Math Sci, Kent, OH 44242 USA
[2] Univ Toledo, Dept Math & Stat, Toledo, OH 43606 USA
关键词
Composition operator; bidisc; compact; Bergman space; WEIGHTED COMPOSITION OPERATORS; ESSENTIAL NORMS; CONVEX DOMAINS; HARDY;
D O I
10.1007/s00020-025-02808-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let phi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document} be a holomorphic self-map of the bidisc that is Lipschitz on the closure. We show that the composition operator C phi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{\varphi }$$\end{document} is compact on the Bergman space if and only if phi(D2<overline>)boolean AND T2=& empty;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi (\overline{\mathbb {D}<^>2})\cap \mathbb {T}<^>2=\emptyset $$\end{document} and phi(D2<overline>\T2)boolean AND bD2=& empty;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi (\overline{\mathbb {D}<^>2}\setminus \mathbb {T}<^>2) \cap b\mathbb {D}<^>2=\emptyset $$\end{document}. In the last section of the paper, we prove a result on C2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C<^>2$$\end{document}-smooth bounded pseudoconvex domains in Cn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {C}<^>{n}$$\end{document}.
引用
收藏
页数:13
相关论文
共 23 条
[11]   Composition operators on the polydisc induced by smooth symbols [J].
Koo, Hyungwoon ;
Stessin, Michael ;
Zhu, Kehe .
JOURNAL OF FUNCTIONAL ANALYSIS, 2008, 254 (11) :2911-2925
[12]   Composition operators induced by smooth self-maps of the unit ball in CN [J].
Koo, Hyungwoon ;
Smith, Wayne .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 329 (01) :617-633
[13]  
Koo H, 2016, INTEGR EQUAT OPER TH, V85, P555, DOI 10.1007/s00020-016-2300-7
[14]   COMPOSITION OPERATORS ON STRICTLY PSEUDOCONVEX DOMAINS WITH SMOOTH SYMBOL [J].
Koo, Hyungwoon ;
Li, Song-Ying .
PACIFIC JOURNAL OF MATHEMATICS, 2014, 268 (01) :135-153
[15]   Composition operators on the polydisc [J].
Kosinski, Lukasz .
JOURNAL OF FUNCTIONAL ANALYSIS, 2023, 284 (05)
[16]  
KRANTZ S. G., 2001, Function theory of several complex variables
[17]   TRACE IDEAL CRITERIA FOR COMPOSITION OPERATORS ON BERGMAN SPACES [J].
LI, SY .
AMERICAN JOURNAL OF MATHEMATICS, 1995, 117 (05) :1299-1323
[18]  
Ha LK, 2019, COMPLEX ANAL OPER TH, V13, P2589, DOI 10.1007/s11785-019-00926-x
[19]   ANGULAR DERIVATIVES AND COMPACT COMPOSITION OPERATORS ON THE HARDY AND BERGMAN SPACES [J].
MACCLUER, BD ;
SHAPIRO, JH .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1986, 38 (04) :878-906
[20]  
Range R. M., 1986, HOLOMORPHIC FUNCTION