Compactness of Composition Operators on the Bergman Space of the Bidisc

被引:0
作者
Clos, Timothy G. [1 ]
Cuckovic, Zeljko [2 ]
Sahutoglu, Sonmez [2 ]
机构
[1] Kent State Univ, Dept Math Sci, Kent, OH 44242 USA
[2] Univ Toledo, Dept Math & Stat, Toledo, OH 43606 USA
关键词
Composition operator; bidisc; compact; Bergman space; WEIGHTED COMPOSITION OPERATORS; ESSENTIAL NORMS; CONVEX DOMAINS; HARDY;
D O I
10.1007/s00020-025-02808-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let phi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document} be a holomorphic self-map of the bidisc that is Lipschitz on the closure. We show that the composition operator C phi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{\varphi }$$\end{document} is compact on the Bergman space if and only if phi(D2<overline>)boolean AND T2=& empty;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi (\overline{\mathbb {D}<^>2})\cap \mathbb {T}<^>2=\emptyset $$\end{document} and phi(D2<overline>\T2)boolean AND bD2=& empty;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi (\overline{\mathbb {D}<^>2}\setminus \mathbb {T}<^>2) \cap b\mathbb {D}<^>2=\emptyset $$\end{document}. In the last section of the paper, we prove a result on C2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C<^>2$$\end{document}-smooth bounded pseudoconvex domains in Cn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {C}<^>{n}$$\end{document}.
引用
收藏
页数:13
相关论文
共 23 条
[1]   Composition operators on the polydisk induced by affine maps [J].
Bayart, Frederic .
JOURNAL OF FUNCTIONAL ANALYSIS, 2011, 260 (07) :1969-2003
[2]  
Chen S.C., 2001, Partial differential equations in several complex variables, V19
[3]   THE ESSENTIAL NORMS OF COMPOSITION OPERATORS [J].
CHOE, BR .
GLASGOW MATHEMATICAL JOURNAL, 1992, 34 :143-155
[4]  
Cowen C. C., 1995, COMPOSITION OPERATOR
[5]   Weighted composition operators on the Bergman space [J].
Cuckovic, Z ;
Zhao, RH .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2004, 70 :499-511
[6]   Essential norm estimates of weighted composition operators between Bergman spaces on strongly pseudoconvex domains [J].
Cuckovic, Zeljko ;
Zhao, Ruhan .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2007, 142 :525-533
[7]   Essential norms of composition operators [J].
Gorkin, P ;
MacCluer, BD .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2004, 48 (01) :27-39
[8]  
HORMANDER L, 1965, ACTA MATH, V113, P89
[9]   ON BOUNDED AND COMPACT COMPOSITION OPERATORS IN POLYDISCS [J].
JAFARI, F .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1990, 42 (05) :869-889
[10]  
Jarnicki M., 2013, De Gruyter Expositions in Mathematics, V9