Noisy data-driven identification for errors-in-variables MISO Hammerstein nonlinear models

被引:0
作者
Hou, Jie [1 ]
Wang, Haoran [1 ]
Li, Penghua [1 ]
Su, Hao [2 ]
机构
[1] Chongqing Univ Posts & Telecommun, Coll Automat, 2 Chongwen Rd, Chongqing 400065, Peoples R China
[2] Beijing Univ Posts & Telecommun, Sch Artificial Intelligence, 10 Xitucheng Rd, Beijing 100876, Peoples R China
来源
CONTROL THEORY AND TECHNOLOGY | 2025年
基金
中国国家自然科学基金;
关键词
Biased-corrected least squares; Errors-in-variables; MISO Hammerstein models; Parameter estimation; System identification; MAXIMUM-LIKELIHOOD-ESTIMATION; SUBSPACE IDENTIFICATION; BIAS-CORRECTION; ROBUST IDENTIFICATION; ESTIMATION ALGORITHM; UNIFIED FRAMEWORK; SYSTEMS; ESTIMATOR;
D O I
10.1007/s11768-025-00264-8
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we consider a multiple-input single-output (MISO) Hammerstein system whose inputs and output are disturbed by unknown Gaussian white measurement noises. The parameter estimation of such a system is a typical errors-in-variables (EIV) nonlinear system identification problem. This paper proposes a bias-correction least squares (BCLS) identification methods to compute a consistent estimate of EIV MISO Hammerstein systems from noisy data. To obtain the unbiased parameter estimates of EIV MISO Hammerstein system, the analytical expression of estimated bias for the standard least squares (LS) algorithm is derived first, which is a function about the variances of noises. And then a recursive algorithm is proposed to estimate the unknown term of noises variances from noisy data. Finally, based on bias estimation scheme, the bias caused by the correlation between the input-output signals exciting the true system and the corresponding measurement noise, resulting in unbiased parameter estimates of the EIV MISO Hammerstein system. The performance of the proposed method is demonstrated through a simulation example and a chemical continuously stirred tank reactor (CSTR) system.
引用
收藏
页数:16
相关论文
共 49 条
[21]  
Kortmann M., 1987, IFAC Proceedings Volumes, V20, P233, DOI [10.1016/S1474-6670(17)55506-8, DOI 10.1016/S1474-6670(17)55506-8]
[22]   Parameter estimation of multiple-input single-output Hammerstein controlled autoregressive system based on improved adaptive moment estimation algorithm [J].
Li, Junhong ;
Xiao, Kang ;
Gu, Juping ;
Hua, Liang .
INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2023, 33 (12) :7094-7113
[23]   Consistent dynamic PCA based on errors-in-variables subspace identification [J].
Li, WH ;
Qin, SJ .
JOURNAL OF PROCESS CONTROL, 2001, 11 (06) :661-678
[24]   Auxiliary model-based recursive least squares algorithm for two-input single-output Hammerstein output-error moving average systems by using the hierarchical identification principle [J].
Liu, Jian ;
Ji, Yan .
INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2022, 32 (13) :7575-7593
[25]   An Extended Closed-loop Subspace Identification Method for Error-in-variables Systems [J].
Liu Tao ;
Shao Cheng .
CHINESE JOURNAL OF CHEMICAL ENGINEERING, 2012, 20 (06) :1136-1141
[26]   Robust Global Identification of LPV Errors-in-Variables Systems With Incomplete Observations [J].
Liu, Xin ;
Han, Guangjie ;
Yang, Xianqiang .
IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2022, 52 (06) :3799-3807
[27]   Overview of total least-squares methods [J].
Markovsky, Ivan ;
Van Huffel, Sabine .
SIGNAL PROCESSING, 2007, 87 (10) :2283-2302
[28]   Recursive identification of multiple-input single-output fractional-order Hammerstein model with time delay [J].
Moghaddam, Mohammad Jahani ;
Mojallali, Hamed ;
Teshnehlab, Mohammad .
APPLIED SOFT COMPUTING, 2018, 70 :486-500
[29]   Persistent Excitation by Deterministic Signals for Subspace Parametric Identification of MISO Hammerstein Systems [J].
Naitali, A. ;
Giri, F. .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2016, 61 (01) :258-263
[30]   Strong laws of large numbers under weak assumptions with application [J].
Ninness, B .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2000, 45 (11) :2117-2122