Noisy data-driven identification for errors-in-variables MISO Hammerstein nonlinear models

被引:0
作者
Hou, Jie [1 ]
Wang, Haoran [1 ]
Li, Penghua [1 ]
Su, Hao [2 ]
机构
[1] Chongqing Univ Posts & Telecommun, Coll Automat, 2 Chongwen Rd, Chongqing 400065, Peoples R China
[2] Beijing Univ Posts & Telecommun, Sch Artificial Intelligence, 10 Xitucheng Rd, Beijing 100876, Peoples R China
来源
CONTROL THEORY AND TECHNOLOGY | 2025年
基金
中国国家自然科学基金;
关键词
Biased-corrected least squares; Errors-in-variables; MISO Hammerstein models; Parameter estimation; System identification; MAXIMUM-LIKELIHOOD-ESTIMATION; SUBSPACE IDENTIFICATION; BIAS-CORRECTION; ROBUST IDENTIFICATION; ESTIMATION ALGORITHM; UNIFIED FRAMEWORK; SYSTEMS; ESTIMATOR;
D O I
10.1007/s11768-025-00264-8
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we consider a multiple-input single-output (MISO) Hammerstein system whose inputs and output are disturbed by unknown Gaussian white measurement noises. The parameter estimation of such a system is a typical errors-in-variables (EIV) nonlinear system identification problem. This paper proposes a bias-correction least squares (BCLS) identification methods to compute a consistent estimate of EIV MISO Hammerstein systems from noisy data. To obtain the unbiased parameter estimates of EIV MISO Hammerstein system, the analytical expression of estimated bias for the standard least squares (LS) algorithm is derived first, which is a function about the variances of noises. And then a recursive algorithm is proposed to estimate the unknown term of noises variances from noisy data. Finally, based on bias estimation scheme, the bias caused by the correlation between the input-output signals exciting the true system and the corresponding measurement noise, resulting in unbiased parameter estimates of the EIV MISO Hammerstein system. The performance of the proposed method is demonstrated through a simulation example and a chemical continuously stirred tank reactor (CSTR) system.
引用
收藏
页数:16
相关论文
共 49 条
[1]   Identification of multiple-input single-output Hammerstein models using Bezier curves and Bernstein polynomials [J].
Ahmadi, Mohamadreza ;
Mojallali, Hamed .
APPLIED MATHEMATICAL MODELLING, 2011, 35 (04) :1969-1982
[2]   Finite Record Effects of the Errors-in-Variables Estimator for Linear Dynamic Systems [J].
Barbe, Kurt ;
Pintelon, Rik ;
Vandersteen, Gerd .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2011, 60 (02) :642-654
[3]   Auxiliary model based multi-innovation algorithms for multivariable nonlinear systems [J].
Chen, Jing ;
Zhang, Yan ;
Ding, Ruifeng .
MATHEMATICAL AND COMPUTER MODELLING, 2010, 52 (9-10) :1428-1434
[4]   Identification of MISO Hammerstein system using sparse multiple kernel-based hierarchical mixture prior and variational Bayesian inference [J].
Chen, Xiaolong ;
Chai, Yi ;
Liu, Qie ;
Huang, Pengfei ;
Fan, Linchuan .
ISA TRANSACTIONS, 2023, 137 :323-338
[5]   Hierarchical gradient- and least-squares-based iterative estimation algorithms for input-nonlinear output-error systems from measurement information by using the over-parameterization [J].
Ding, Feng ;
Xu, Ling ;
Zhang, Xiao ;
Ma, Hao .
INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2024, 34 (02) :1120-1147
[6]   Multi-innovation least squares identification methods based on the auxiliary model for MISO systems [J].
Ding, Feng ;
Chen, Huibo ;
Li, Ming .
APPLIED MATHEMATICS AND COMPUTATION, 2007, 187 (02) :658-668
[7]   Least squares parameter estimation and multi-innovation least squares methods for linear fitting problems from noisy data [J].
Ding, Feng .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2023, 426
[8]   A hierarchical least squares identification algorithm for Hammerstein nonlinear systems using the key term separation [J].
Ding, Feng ;
Chen, Huibo ;
Xu, Ling ;
Dai, Jiyang ;
Li, Qishen ;
Hayat, Tasawar .
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2018, 355 (08) :3737-3752
[9]   Robust identification for nonlinear errors-in-variables systems using the EM algorithm [J].
Guo, F. ;
Hariprasad, K. ;
Huang, B. ;
Ding, Y. S. .
JOURNAL OF PROCESS CONTROL, 2017, 54 :129-137
[10]   An Augmented Model Approach for Identification of Nonlinear Errors-in-Variables Systems Using the EM Algorithm [J].
Guo, Fan ;
Wu, Ouyang ;
Kodamana, Hariprasad ;
Ding, Yongsheng ;
Huang, Biao .
IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2018, 48 (11) :1968-1978