Evolutionary Algorithms for Tracking Algorithm Parameter Optimization

被引:0
作者
Chatain, Peter [1 ]
Garg, Rocky [1 ]
Tompkins, Lauren [1 ]
机构
[1] Stanford Univ, Stanford, CA 94305 USA
来源
25TH INTERNATIONAL CONFERENCE ON COMPUTING IN HIGH ENERGY AND NUCLEAR PHYSICS, CHEP 2021 | 2021年 / 251卷
基金
美国国家科学基金会;
关键词
D O I
10.1051/epjconf/202125103071
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The reconstruction of charged particle trajectories, known as tracking, is one of the most complex and CPU consuming parts of event processing in high energy particle physics experiments. The most widely used and best performing tracking algorithms require significant geometry-specific tuning of the algorithm parameters to achieve best results. In this paper, we demonstrate the usage of machine learning techniques, particularly evolutionary algorithms, to find high performing configurations for the first step of tracking, called track seeding. We use a track seeding algorithm from the software framework A Common Tracking Software (ACTS). ACTS aims to provide an experiment-independent and framework-independent tracking software designed for modern computing architectures. We show that our optimization algorithms find highly performing configurations in ACTS without hand-tuning. These techniques can be applied to other reconstruction tasks, improving performance and reducing the need for laborious hand-tuning of parameters.
引用
收藏
页数:9
相关论文
共 11 条
[1]  
Abe T., 2010, Belle II Technical Design Report
[2]  
Akesson T., 2018, Light Dark Matter experiment (LDMX)
[3]  
Amrouche S, 2020, SPRING SER CHALLENGE, P231, DOI 10.1007/978-3-030-29135-8_9
[4]  
Fortin FA, 2012, J MACH LEARN RES, V13, P2171
[5]   The Acts project: track reconstruction software for HL-LHC and beyond [J].
Gessinger, Paul ;
Grasland, Hadrien ;
Gray, Heather ;
Kiehn, Moritz ;
Klimpel, Fabian ;
Langenberg, Robert ;
Salzburger, Andreas ;
Schlag, Bastian ;
Zhang, Jin ;
Ai, Xiaocong .
24TH INTERNATIONAL CONFERENCE ON COMPUTING IN HIGH ENERGY AND NUCLEAR PHYSICS (CHEP 2019), 2020, 245
[6]  
Gray H.M., 2010, Ph.D. thesis
[7]  
Samples ME, 2007, STUD COMPUT INTELL, V54, P161
[8]  
Sipper M., 2018, BioData Mining, V11
[9]   An introduction to PYTHIA 8.2 [J].
Sjostrand, Torbjorn ;
Ask, Stefan ;
Christiansen, Jesper R. ;
Corke, Richard ;
Desai, Nishita ;
Ilten, Philip ;
Mrenna, Stephen ;
Prestel, Stefan ;
Rasmussen, Christine O. ;
Skands, Peter Z. .
COMPUTER PHYSICS COMMUNICATIONS, 2015, 191 :159-177
[10]  
Track Seeding, ACTS Core Library Docs