Impact of elevated GaAs barrier growth temperature on the homogeneity and photoluminescence of GaAsBi multiple quantum wells

被引:0
作者
Dudutienė, Evelina [1 ]
Jasinskas, Algirdas [1 ]
Stanionytė, Sandra [1 ]
Skapas, Martynas [1 ]
Vaitkevičius, Augustas [1 ]
Čechavičius, Bronislovas [1 ]
Butkutė, Renata [1 ]
机构
[1] State research institute Center for Physical Sciences and Technology, Saulėtekio av. 3, Vilnius
关键词
GaAsBi; Molecular beam epitaxy; Multiple quantum wells; NIR emitters; Photoluminescence;
D O I
10.1016/j.mssp.2025.109828
中图分类号
学科分类号
摘要
In this work, we compare two molecular beam epitaxy (MBE) modes used for the growth of GaAsBi/GaAs multiple quantum well (MQW) structures. In the conventional growth mode, both the GaAsBi quantum well and GaAs barrier layers were grown at 370 °C, whereas in the modified growth mode, the substrate temperature was increased to 450 °C during GaAs barrier layer deposition. The results indicate that the elevated barrier growth temperature led to higher Bi incorporation and more homogeneous Bi distribution within GaAsBi, along with a reduction in defect density. On the other hand, MQW structures grown at a constant 370 °C temperature exhibited more uniform quantum well thickness. Despite its lower emission efficiency, the photoluminescence (PL) intensity was higher for the GaAsBi/GaAs MQW, where the entire structure was grown at the same 370 °C temperature, likely due to enhanced carrier localization. © 2025 Elsevier Ltd
引用
收藏
相关论文
共 37 条
[1]  
Fluegel B., Francoeur S., Mascarenhas A., Tixier S., Young E.C., Tiedje T., Giant spin-orbit bowing in GaAs<sub>1−x</sub>Bi<sub>x</sub>, Phys. Rev. Lett., 97, (2006)
[2]  
Francoeur S., Seong M.-J., Mascarenhas A., Tixier S., Adamcyk M., Tiedje T., Band gap of GaAs<sub>1−x</sub>Bi<sub>x</sub>, 0<x<3.6%, Appl. Phys. Lett., 82, 22, pp. 3874-3876, (2003)
[3]  
Yoshida J., Kita T., Wada O., Oe K., Temperature dependence of GaAs<sub>1−x</sub>Bi<sub>x</sub> band gap studied by photoreflectance spectroscopy, Japan. J. Appl. Phys., 42, 2R, (2003)
[4]  
Marko I.P., Broderick C.A., Jin S., Ludewig P., Stolz W., Volz K., Rorison J.M., O'Reilly E.P., Sweeney S.J., Optical gain in GaAsBi/GaAs quantum well diode lasers, Sci. Rep., 6, 1, (2016)
[5]  
Wu X., Pan W., Zhang Z., Li Y., Cao C., Liu J., Zhang L., Song Y., Ou H., Wang S., 1.142 μM GaAsBi/GaAs quantum well lasers grown by molecular beam epitaxy, ACS Photonics, 4, 6, pp. 1322-1326, (2017)
[6]  
Glemza J., Spokas A., Zelioli A., Kamarauskas M., Biciunas A., Cechavicius B., Spigulis J., Chiu Y.-J., Pralgauskaite S., Matukas J., Butkute R., Quality evaluation of NIR laser diodes for medical application using low-frequency noise characterization, Infrared Phys. Technol., 147, (2025)
[7]  
Richards R.D., Bastiman F., Hunter C.J., Mendes D.F., Mohmad A.R., Roberts J.S., David J.P., Molecular beam epitaxy growth of GaAsBi using As<sub>2</sub> and As<sub>4</sub>, J. Cryst. Growth, 390, pp. 120-124, (2014)
[8]  
Fitouri H., Moussa I., Rebey A., El Jani B., Surface analysis of different oriented GaAs substrates annealed under bismuth flow, J. Cryst. Growth, 300, 2, pp. 347-352, (2007)
[9]  
Fan D., Zeng Z., Hu X., Dorogan V.G., Li C., Benamara M., Hawkridge M.E., Mazur Y.I., Yu S.-Q., Johnson S.R., Wang Z.M., Salamo G.J., Molecular beam epitaxy growth of GaAsBi/GaAs/AlGaAs separate confinement heterostructures, Appl. Phys. Lett., 101, 18, (2012)
[10]  
Richards R.D., Bastiman F., Walker D., Beanland R., David J.P.R., Growth and structural characterization of GaAsBi/GaAs multiple quantum wells, Semicond. Sci. Technol., 30, 9, (2015)