Superelasticity over a wide temperature range in a NiTiCu shape memory alloy via laser powder bed fusion

被引:0
作者
Lu, Haizhou [1 ]
Zhou, Zhijie [1 ]
Yang, Yong [1 ]
Deng, Cheng [1 ]
Ma, Hongwei [2 ]
Cai, Weisi [2 ]
Yin, Shuo [3 ]
Yang, Chao [2 ]
机构
[1] School of Mechatronic Engineering, Guangdong Polytechnic Normal University, Guangzhou
[2] National Engineering Research Center of Near-net-shape Forming for Metallic Materials, South China University of Technology, Guangzhou
[3] Trinity College Dublin, the University of Dublin, Department of Mechanical, Manufacturing and Biomedical Engineering, Parsons Building
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Distorted austenite phase; Laser powder bed fusion; NiTiCu shape memory alloys; Stacking faults; Superelasticity;
D O I
10.1016/j.matdes.2025.114417
中图分类号
学科分类号
摘要
Additively manufactured NiTi-based shape memory alloys (SMAs) can achieve good superelasticity at specific temperatures. However, the realization of superelasticity over a wide temperature range in additively manufactured NiTi-based SMAs has rarely been reported. To the best of our knowledge, this is the first study to present the in situ synthesis of (Ni50.4Ti49.6)95Cu5 ternary SMA via laser powder bed fusion (LPBF) additive manufacturing process using a mixture of pre-alloyed Ni50.4Ti49.6 and elemental Cu powders to expand the temperature range for applications of superelastic NiTi-based SMAs via additive manufacturing. The alloy displayed relatively good compressive recovery strain (1.54–2.40 %) within the temperature range from −50–50 ℃. The distorted Ti(Ni, Cu) B2 austenite matrix and high-density stacking faults formed because the supersaturated Cu atoms significantly strengthened the matrix and impeded dislocation formation during stress-induced martensitic transformation. In addition, supersaturated Cu atoms introduced numerous lattice distortion regions into Ti2(Ni, Cu) precipitates and impeded dislocation movement, effectively strengthening the matrix. The synergistic effect of these factors contributes to the superelasticity of LPBF (Ni50.4Ti49.6)95Cu5 over a relatively wide temperature range. These findings pave the way for achieving superelasticity over a wide temperature range in LPBF NiTi-based SMAs. © 2025 The Authors
引用
收藏
相关论文
共 53 条
[41]  
Zarnetta R., Takahashi R., Young M.L., Savan A., Furuya Y., Thienhaus S., Maass B., Rahim M., Frenzel J., Brunken H., Chu Y.S., Srivastava V., James R.D., Takeuchi I., Eggeler G., Ludwig A., Identification of quaternary shape memory alloys with near-zero thermal hysteresis and unprecedented functional stability, Adv. Funct. Mater., 20, 12, pp. 1917-1923, (2010)
[42]  
Oliveira J.P., Cavaleiro A.J., Schell N., Stark A., Miranda R.M., Ocana J.L., Braz Fernandes F.M., Effects of laser processing on the transformation characteristics of NiTi: a contribute to additive manufacturing, Scr. Mater., 152, pp. 122-126, (2018)
[43]  
Li B., Wang L., Wang B., Li D., Cui R., Su B., Yao L., Luo L., Chen R., Su Y., Guo J., Fu H., Solidification characterization and its correlation with the mechanical properties and functional response of NiTi shape memory alloy manufactured by electron beam freeform fabrication, Addit. Manuf., 48, (2021)
[44]  
Tan C., Zou J., Li S., Jamshidi P., Abena A., Forsey A., Moat R.J., Essa K., Wang M., Zhou K., Attallah M.M., Additive manufacturing of bio-inspired multi-scale hierarchically strengthened lattice structures, Int. J. Mach. Tools Manuf, 167, (2021)
[45]  
Yi J., Wan L., Shu T., Zhang X., Liu F., Cheng G.J., Unleashing multi-scale mechanical enhancement in NiTi shape memory alloy via annular intra-laser deposition with homogenized Ti<sub>2</sub>Ni nanoprecipitates, Acta Mater., 262, (2024)
[46]  
Zhu J., Wu H.-H., Wu Y., Wang H., Zhang T., Xiao H., Wang Y., Shi S.-Q., Influence of Ni<sub>4</sub>Ti<sub>3</sub> precipitation on martensitic transformations in NiTi shape memory alloy: R phase transformation, Acta Mater., 207, (2021)
[47]  
Tirry W., Schryvers D., Linking a completely three-dimensional nanostrain to a structural transformation eigenstrain, Nat. Mater., 8, 9, pp. 752-757, (2009)
[48]  
Hou H., Simsek E., Ma T., Johnson N.S., Qian S., Cisse C., Stasak D., Al Hasan N., Zhou L., Hwang Y., Radermacher R., Levitas V.I., Kramer M.J., Zaeem M.A., Stebner A.P., Ott R.T., Cui J., Takeuchi I., Fatigue-resistant high-performance elastocaloric materials made by additive manufacturing, Science, 366, 6469, pp. 1116-1121, (2019)
[49]  
Lv C., Wang K., Wang B., Zheng J., Zhang K., Li G., Lai Y., Fu Y., Hou H., Zhao X., Coexistence of strain glass transition and martensitic transformation in highly nickel-rich ferroelastic alloy with large elastocaloric effect, Acta Mater., 264, (2024)
[50]  
Ahadi A., Kawasaki T., Harjo S., Ko W.-S., Sun Q., Tsuchiya K., Reversible elastocaloric effect at ultra-low temperatures in nanocrystalline shape memory alloys, Acta Mater., 165, pp. 109-117, (2019)