Superelasticity over a wide temperature range in a NiTiCu shape memory alloy via laser powder bed fusion

被引:0
作者
Lu, Haizhou [1 ]
Zhou, Zhijie [1 ]
Yang, Yong [1 ]
Deng, Cheng [1 ]
Ma, Hongwei [2 ]
Cai, Weisi [2 ]
Yin, Shuo [3 ]
Yang, Chao [2 ]
机构
[1] School of Mechatronic Engineering, Guangdong Polytechnic Normal University, Guangzhou
[2] National Engineering Research Center of Near-net-shape Forming for Metallic Materials, South China University of Technology, Guangzhou
[3] Trinity College Dublin, the University of Dublin, Department of Mechanical, Manufacturing and Biomedical Engineering, Parsons Building
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Distorted austenite phase; Laser powder bed fusion; NiTiCu shape memory alloys; Stacking faults; Superelasticity;
D O I
10.1016/j.matdes.2025.114417
中图分类号
学科分类号
摘要
Additively manufactured NiTi-based shape memory alloys (SMAs) can achieve good superelasticity at specific temperatures. However, the realization of superelasticity over a wide temperature range in additively manufactured NiTi-based SMAs has rarely been reported. To the best of our knowledge, this is the first study to present the in situ synthesis of (Ni50.4Ti49.6)95Cu5 ternary SMA via laser powder bed fusion (LPBF) additive manufacturing process using a mixture of pre-alloyed Ni50.4Ti49.6 and elemental Cu powders to expand the temperature range for applications of superelastic NiTi-based SMAs via additive manufacturing. The alloy displayed relatively good compressive recovery strain (1.54–2.40 %) within the temperature range from −50–50 ℃. The distorted Ti(Ni, Cu) B2 austenite matrix and high-density stacking faults formed because the supersaturated Cu atoms significantly strengthened the matrix and impeded dislocation formation during stress-induced martensitic transformation. In addition, supersaturated Cu atoms introduced numerous lattice distortion regions into Ti2(Ni, Cu) precipitates and impeded dislocation movement, effectively strengthening the matrix. The synergistic effect of these factors contributes to the superelasticity of LPBF (Ni50.4Ti49.6)95Cu5 over a relatively wide temperature range. These findings pave the way for achieving superelasticity over a wide temperature range in LPBF NiTi-based SMAs. © 2025 The Authors
引用
收藏
相关论文
共 53 条
[31]  
Li G., Brodu E., Soete J., Wei H., Liu T., Yang T., Liao W., Vanmeensel K., Exploiting the rapid solidification potential of Laser Powder Bed Fusion in high strength and crack-free Al-Cu-Mg-Mn-Zr alloys, Addit. Manuf., 47, (2021)
[32]  
Dang P., Ye F., Zhou Y., Ding L., Pang J., Zhang L., Ding X., Sun J., Dai S., Lookman T., Xue D., Low-fatigue and large room-temperature elastocaloric effect in a bulk Ti49.2Ni40.8Cu10 alloy, Acta Mater., 229, (2022)
[33]  
Shim J.-H., Kim J.-H., Lim J.-H., Kim J.G., Oh J.S., Lee T., Li S., Nam T.-H., Improvement in the superelasticity of a Ti–35.5Ni–15Cu (at.%) alloy using Ti(Ni,Cu)<sub>2</sub> phase, Mater. Sci. Eng. A, 847, (2022)
[34]  
Lu H.Z., Liu L.H., Yang C., Luo X., Song C.H., Wang Z., Wang J., Su Y.D., Ding Y.F., Zhang L.C., Li Y.Y., Simultaneous enhancement of mechanical and shape memory properties by heat-treatment homogenization of Ti<sub>2</sub>Ni precipitates in TiNi shape memory alloy fabricated by selective laser melting, J. Mater. Sci. Technol., 101, pp. 205-216, (2022)
[35]  
Pu Z., Du D., Wang K., Liu G., Zhang D., Zhang H., Xi R., Wang X., Chang B., Study on the NiTi shape memory alloys in-situ synthesized by dual-wire-feed electron beam additive manufacturing, Addit. Manuf., 56, (2022)
[36]  
Saedi S., Shayesteh Moghaddam N., Amerinatanzi A., Elahinia M., Karaca H.E., On the effects of selective laser melting process parameters on microstructure and thermomechanical response of Ni-rich NiTi, Acta Mater., 144, pp. 552-560, (2018)
[37]  
Cai W.S., Lu H.Z., Li H.Z., Liu Z., Ke H.B., Wang W.H., Yang C., Microstructural evolution and superelastic properties of ultrafine-grained NiTi-based shape memory alloy via sintering of amorphous ribbon precursor, J. Mater. Sci. Technol., 138, pp. 80-92, (2023)
[38]  
Singh N., Talapatra A., Junkaew A., Duong T., Gibbons S., Li S., Thawabi H., Olivos E., Arroyave R., Effect of ternary additions to structural properties of NiTi alloys, Comput. Mater. Sci, 112, pp. 347-355, (2016)
[39]  
Yang X., Ma L., Shang J., Martensitic transformation of Ti50(Ni50−xCux) and Ni50(Ti50−xZrx) shape-memory alloys, Sci. Rep., 9, 1, (2019)
[40]  
Frenzel J., Wieczorek A., Opahle I., Maass B., Drautz R., Eggeler G., On the effect of alloy composition on martensite start temperatures and latent heats in Ni–Ti-based shape memory alloys, Acta Mater., 90, pp. 213-231, (2015)