共 53 条
[1]
Otsuka K., Ren X., Physical metallurgy of Ti–Ni-based shape memory alloys, Prog. Mater Sci., 50, 5, pp. 511-678, (2005)
[2]
Elahinia M., Shayesteh Moghaddam N., Taheri Andani M., Amerinatanzi A., Bimber B.A., Hamilton R.F., Fabrication of NiTi through additive manufacturing: a review, Prog. Mater Sci., 83, pp. 630-663, (2016)
[3]
Alagha A.N., Hussain S., Zaki W., Additive manufacturing of shape memory alloys: a review with emphasis on powder bed systems, Mater. Des., 204, (2021)
[4]
Ahadi A., Sun Q., Stress-induced nanoscale phase transition in superelastic NiTi by in situ X-ray diffraction, Acta Mater., 90, pp. 272-281, (2015)
[5]
Chen J., Yin H., Sun Q., Effects of grain size on fatigue crack growth behaviors of nanocrystalline superelastic NiTi shape memory alloys, Acta Mater., 195, pp. 141-150, (2020)
[6]
Delville R., Malard B., Pilch J., Sittner P., Schryvers D., Transmission electron microscopy investigation of dislocation slip during superelastic cycling of Ni–Ti wires, Int. J. Plast, 27, 2, pp. 282-297, (2011)
[7]
Sittner P., Sedlak P., Seiner H., Sedmak P., Pilch J., Delville R., Heller L., Kaderavek L., On the coupling between martensitic transformation and plasticity in NiTi: Experiments and continuum based modelling, Prog. Mater Sci., 98, pp. 249-298, (2018)
[8]
Tyc O., Heller L., Vronka M., Sittner P., Effect of temperature on fatigue of superelastic NiTi wires, Int. J. Fatigue, 134, (2020)
[9]
Chen H., Xiao F., Liang X., Li Z., Li Z., Jin X., Min N., Fukuda T., Improvement of the stability of superelasticity and elastocaloric effect of a Ni-rich Ti-Ni alloy by precipitation and grain refinement, Scr. Mater., 162, pp. 230-234, (2019)
[10]
Liu Y., Galvin S., Criteria for pseudoelasticity in near-equiatomic NiTi shape memory alloys, Acta Mater., 45, 11, pp. 4431-4439, (1997)