Cross-Modal Weighting Network for RGB-D Salient Object Detection

被引:153
作者
Li, Gongyang [1 ]
Liu, Zhi [1 ]
Ye, Linwei [2 ]
Wang, Yang [2 ,4 ]
Ling, Haibin [3 ]
机构
[1] Shanghai Univ, Shanghai, Peoples R China
[2] Univ Manitoba, Winnipeg, MB, Canada
[3] SUNY Stony Brook, Stony Brook, NY USA
[4] Huawei Technol Canada, Markham, ON, Canada
来源
COMPUTER VISION - ECCV 2020, PT XVII | 2020年 / 12362卷
基金
加拿大自然科学与工程研究理事会; 中国国家自然科学基金;
关键词
RGB-D salient object detection; Cross-Modal Weighting; Depth-to-RGB weighting; RGB-to-RGB weighting; FUSION; ATTENTION;
D O I
10.1007/978-3-030-58520-4_39
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Depth maps contain geometric clues for assisting Salient Object Detection (SOD). In this paper, we propose a novel Cross-Modal Weighting (CMW) strategy to encourage comprehensive interactions between RGB and depth channels for RGB-D SOD. Specifically, three RGB-depth interaction modules, named CMW-L, CMW-M and CMW-H, are developed to deal with respectively low-, middle- and high-level cross-modal information fusion. These modules use Depth-to-RGB Weighing (DW) and RGB-to-RGB Weighting (RW) to allow rich cross-modal and cross-scale interactions among feature layers generated by different network blocks. To effectively train the proposed Cross-Modal Weighting Network (CMWNet), we design a composite loss function that summarizes the errors between intermediate predictions and ground truth over different scales. With all these novel components working together, CMWNet effectively fuses information from RGB and depth channels, and meanwhile explores object localization and details across scales. Thorough evaluations demonstrate CMWNet consistently outperforms 15 state-of-the-art RGB-D SOD methods on seven popular benchmarks.
引用
收藏
页码:665 / 681
页数:17
相关论文
共 45 条
[11]  
Fan DP, 2020, Arxiv, DOI arXiv:1907.06781
[12]   Structure-measure: A New Way to Evaluate Foreground Maps [J].
Fan, Deng-Ping ;
Cheng, Ming-Ming ;
Liu, Yun ;
Li, Tao ;
Borji, Ali .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, :4558-4567
[13]  
Fan DP, 2018, PROCEEDINGS OF THE TWENTY-SEVENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, P698
[14]  
Fan XX, 2014, INT CONF DIGIT SIG, P454, DOI 10.1109/ICDSP.2014.6900706
[15]   Saliency Detection for Stereoscopic Images [J].
Fang, Yuming ;
Wang, Junle ;
Narwaria, Manish ;
Le Callet, Patrick ;
Lin, Weisi .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2014, 23 (06) :2625-2636
[16]   Local Background Enclosure for RGB-D Salient Object Detection [J].
Feng, David ;
Barnes, Nick ;
You, Shaodi ;
McCarthy, Chris .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :2343-2350
[17]  
Glorot X., 2010, P 13 INT C ART INT S, P249, DOI DOI 10.1109/LGRS.2016.2565705
[18]  
Guo J., 2015, ACM ICIMCS
[19]  
Guo JF, 2016, IEEE INT CON MULTI
[20]   CNNs-Based RGB-D Saliency Detection via Cross-View Transfer and Multiview Fusion [J].
Han, Junwei ;
Chen, Hao ;
Liu, Nian ;
Yan, Chenggang ;
Li, Xuelong .
IEEE TRANSACTIONS ON CYBERNETICS, 2018, 48 (11) :3171-3183