Combining radiomics and deep learning to predict liver metastasis of gastric cancer on CT image

被引:0
作者
Guo, Yimin [1 ,2 ]
Yin, Haixiang [2 ,3 ]
Zhang, Hanyue [1 ,2 ]
Liang, Pan [1 ,2 ]
Gao, Jianbo [1 ,2 ]
Cheng, Ming [3 ,4 ]
机构
[1] Zhengzhou Univ, Dept Radiol, Affiliated Hosp 1, Zhengzhou, Henan, Peoples R China
[2] Zhengzhou Univ, Henan Key Lab Image Diag & Treatment Digest Syst T, Affiliated Hosp 1, Zhengzhou, Henan, Peoples R China
[3] Zhengzhou Univ, Dept Med Informat, Affiliated Hosp 1, Zhengzhou, Henan, Peoples R China
[4] Zhengzhou Univ, Inst Interconnected Intelligent Hlth Management He, Affiliated Hosp 1, Zhengzhou, Henan, Peoples R China
关键词
deep learning; radiomics nomogram; gastric cancer; liver metastasis; computed tomography; NEOADJUVANT CHEMOTHERAPY; HEPATIC METASTASIS;
D O I
10.3389/fonc.2025.1613972
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Objective: Our study aimed to explore the potential of deep learning (DL) radiomics features from CT images of primary gastric cancer (GC) in predicting gastric cancer liver metastasis (GCLM) by establishing and verifying a prediction model based on clinical factors, classical radiomics and DL features. Methods: We retrospectively analyzed 1001 pathologically confirmed GC patients from June 2014 to May 2024, divided into non-LM (n=689) and LM groups (n=312). CT-based classic radiomics and DL features were extracted and screened to construct a DL-radiomics score. This score, along with statistically significant clinical factors, was used to build a fused model which visualized as a nomogram. The model's predictive performance, calibration, and clinical utility were assessed and compared against a clinical model. Additionally, the DL-radiomics score's role in distinguishing between synchronous and metachronous GCLM was evaluated. Results: The fused model showed good predictive performance [AUC: 0.796 (95% CI: 0.766-0.826) in training cohort and 0.787 (95% CI: 0.741-0.834) in test cohort], outperforming the clinical model, radiomics score and DL score (P<0.05). In addition, the decision curve confirmed that the model provided the largest clinical net benefit compared with all other models in the relevant threshold. DL-radiomics score showed moderate predictive performance in distinguishing between synchronous GCLM and metachronous GCLM, with an AUC of 0.665 (95% CI, 0.613-0.718). Conclusion: The CT-based fused model has demonstrated significant value in predicting the occurrence of GCLM, and can provide a reference for the personalized follow-up and treatment of patients.
引用
收藏
页数:13
相关论文
共 38 条
[1]   Gastric Cancer, Version 2.2022 [J].
Ajani, Jaffer A. ;
D'Amico, Thomas A. ;
Bentrem, David J. ;
Chao, Joseph ;
Cooke, David ;
Corvera, Carlos ;
Das, Prajnan ;
Enzinger, Peter C. ;
Enzler, Thomas ;
Fanta, Paul ;
Farjah, Farhood ;
Gerdes, Hans ;
Gibson, Michael K. ;
Hochwald, Steven ;
Hofstetter, Wayne L. ;
Ilson, David H. ;
Keswani, Rajesh N. ;
Kim, Sunnie ;
Kleinberg, Lawrence R. ;
Klempner, Samuel J. ;
Lacy, Jill ;
Ly, Quan P. ;
Matkowskyj, Kristina A. ;
McNamara, Michael ;
Mulcahy, Mary F. ;
Outlaw, Darryl ;
Park, Haeseong ;
Perry, Kyle A. ;
Pimiento, Jose ;
Poultsides, George A. ;
Reznik, Scott ;
Roses, Robert E. ;
Strong, Vivian E. ;
Su, Stacey ;
Wang, Hanlin L. ;
Wiesner, Georgia ;
Willett, Christopher G. ;
Yakoub, Danny ;
Yoon, Harry ;
McMillian, Nicole ;
Pluchino, Lenora A. .
JOURNAL OF THE NATIONAL COMPREHENSIVE CANCER NETWORK, 2022, 20 (02) :167-192
[2]   Role of artificial intelligence in multidisciplinary imaging diagnosis of gastrointestinal diseases [J].
Berbis, M. Alvaro ;
Aneiros-Fernandez, Jose ;
Olivares, F. Javier Mendoza ;
Nava, Enrique ;
Luna, Antonio .
WORLD JOURNAL OF GASTROENTEROLOGY, 2021, 27 (27) :4395-4412
[3]   Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries [J].
Bray, Freddie ;
Laversanne, Mathieu ;
Sung, Hyuna ;
Ferlay, Jacques ;
Siegel, Rebecca L. ;
Soerjomataram, Isabelle ;
Jemal, Ahmedin .
CA-A CANCER JOURNAL FOR CLINICIANS, 2024, 74 (03) :229-263
[4]   Recent advances and clinical applications of deep learning in medical image analysis [J].
Chen, Xuxin ;
Wang, Ximin ;
Zhang, Ke ;
Fung, Kar-Ming ;
Thai, Theresa C. ;
Moore, Kathleen ;
Mannel, Robert S. ;
Liu, Hong ;
Zheng, Bin ;
Qiu, Yuchen .
MEDICAL IMAGE ANALYSIS, 2022, 79
[5]   Deep Learning Radiomics Analysis of CT Imaging for Differentiating Between Crohn's Disease and Intestinal Tuberculosis [J].
Cheng, Ming ;
Zhang, Hanyue ;
Huang, Wenpeng ;
Li, Fei ;
Gao, Jianbo .
JOURNAL OF IMAGING INFORMATICS IN MEDICINE, 2024, 37 (04) :1516-1528
[6]   A CT-based deep learning radiomics nomogram for predicting the response to neoadjuvant chemotherapy in patients with locally advanced gastric cancer: A multicenter cohort study [J].
Cui, Yanfen ;
Zhang, Jiayi ;
Li, Zhenhui ;
Wei, Kaikai ;
Lei, Ye ;
Ren, Jialiang ;
Wu, Lei ;
Shi, Zhenwei ;
Meng, Xiaochun ;
Yang, Xiaotang ;
Gao, Xin .
ECLINICALMEDICINE, 2022, 46
[7]   Clinicopathological features and prognosis of synchronous and metachronous colorectal cancer: a retrospective cohort study [J].
Fan, Hao ;
Wen, Rongbo ;
Zhou, Leqi ;
Gao, Xianhua ;
Lou, Zheng ;
Hao, Liqiang ;
Meng, Ronggui ;
Gong, Haifeng ;
Yu, Guanyu ;
Zhang, Wei .
INTERNATIONAL JOURNAL OF SURGERY, 2023, 109 (12) :4073-4090
[8]  
Garajova Ingrid, 2020, Acta Biomed, V92, pe2021061, DOI 10.23750/abm.v92i1.11050
[9]   Deep learning radio-clinical signatures for predicting neoadjuvant chemotherapy response and prognosis from pretreatment CT images of locally advanced gastric cancer patients [J].
Hu, Can ;
Chen, Wujie ;
Li, Feng ;
Zhang, Yanqiang ;
Yu, Pengfei ;
Yang, Litao ;
Huang, Ling ;
Sun, Jiancheng ;
Chen, Shangqi ;
Shi, Chengwei ;
Sun, Yuanshui ;
Ye, Zaisheng ;
Yuan, Li ;
Chen, Jiahui ;
Wei, Qin ;
Xu, Jingli ;
Xu, Handong ;
Tong, Yahan ;
Bao, Zhehan ;
Huang, Chencui ;
Li, Yiming ;
Du, Yian ;
Xu, Zhiyuan ;
Cheng, Xiangdong .
INTERNATIONAL JOURNAL OF SURGERY, 2023, 109 (07) :1980-1992
[10]   A tutorial on calibration measurements and calibration models for clinical prediction models [J].
Huang, Yingxiang ;
Li, Wentao ;
Macheret, Fima ;
Gabriel, Rodney A. ;
Ohno-Machado, Lucila .
JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2020, 27 (04) :621-633