Design and optimization of Cs2AgInBr6/CsSnI3-based dual-absorber inorganic perovskite solar cell for enhanced broadband absorption

被引:0
作者
Borah, Janmoni [1 ]
Baruah, Smriti [1 ]
机构
[1] Madanapalle Institute of Technology & Science, Andhra Pradesh, Madanapalle
来源
Micro and Nanostructures | 2025年 / 207卷
关键词
Cs[!sub]2[!/sub]AgInBr[!sub]6[!/sub; CsSnI[!sub]3[!/sub; Dual absorbers; Inorganic perovskite; Power conversion efficiency;
D O I
10.1016/j.micrna.2025.208274
中图分类号
学科分类号
摘要
This article introduces an innovative dual-absorber solar cell design using Dicesium Silver Indium Hexabromide (Cs2AgInBr6) and Cesium Tin Tri-iodide (CsSnI3) in a FTO/ZnO/Cs2AgInBr6/CsSnI3/CFTS heterojunction architecture. The optimal energy band alignment, along with structural and electrical parameter optimization of the Cs2AgInBr6/CsSnI3 dual-absorber configuration, enhances power conversion efficiency (PCE), overcoming limitations in single-absorber Cs2AgInBr6 perovskite photovoltaic cells (PPCs). This enhancement is due to the synergistic effects between absorbers, improving light absorption and charge carrier dynamics. Using SCAPS-1D, critical parameters such as absorber thickness, defect density, and carrier transport layers were optimized. The dual-absorber achieved a PCE of 25.32 %, Voc of 0.95 V, fill factor of 86 %, and Jsc of 31.9 mA/cm2, outperforming the 11.96 % PCE of single-absorber PPCs. A peak quantum efficiency (QE) of 90 % spanning over 300–1000 nm wavelength range was also obtained, surpassing the 79 % QE of single absorbers over 300–830 nm. © 2025 Elsevier Ltd
引用
收藏
相关论文
共 74 条
[41]  
Lei H.W., Hardy D., Gao F., Lead-free double perovskite Cs2AgBiBr6: fundamentals, applications, and perspectives, Adv. Funct. Mater., 31, (2021)
[42]  
Stoumpos C.C., Et al., Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties, Inorg. Chem., 52, 15, pp. 20-1669, (2013)
[43]  
Liu Y., Et al., Stability of the halide double perovskite Cs2AgInBr6, J. Phys. Chem. Lett., 14, 12, pp. 3000-3006, (2023)
[44]  
Khalid Hossain M., Et al., A comprehensive study of the optimization and comparison of cesium halide perovskite solar cells using ZnO and Cu2FeSnS4 as charge transport layers, New J. Chem., 47, pp. 8602-8624, (2023)
[45]  
Zhou C., Chen W., Chen Z., Et al., Simulation of novel CFTS solar cells with SCAPS-1D software, J. Opt., (2024)
[46]  
Kone K.E., Bouich A., Soro D., Et al., Surface engineering of zinc oxide thin as an electron transport layer for perovskite solar cells, Opt. Quant. Electron., 55, (2023)
[47]  
Abd El-Lateef H.M., Khalaf M.M., Heakal F.E.-T., Abou Taleb M.F., Gouda M., Electron transport materials based on ZnO@carbon derived metal-organic framework for high-performance perovskite solar cell, Sol. Energy, 253, pp. 453-461, (2023)
[48]  
Idrissi S., Ziti S., Labrim H., Bahmad L., Band gaps of the solar perovskites photovoltaic CsXCl3 (X=Sn, Pb or Ge), Mater. Sci. Semicond. Process., 122, (2021)
[49]  
Liu Y., Tran I.J.C.M.N., Aydi E.S., Stability of the halide double perovskite Cs2AgInBr6, J. Phys. Chem. Lett., 14, 12, pp. 3000-3006, (2023)
[50]  
Khalid Hossain M., Et al., Achieving above 24% efficiency with non-toxic CsSnI3 perovskite solar cells by harnessing the potential of the absorber and charge transport layers, RSC Adv., 13, pp. 23514-23537, (2023)