Design and optimization of Cs2AgInBr6/CsSnI3-based dual-absorber inorganic perovskite solar cell for enhanced broadband absorption

被引:0
作者
Borah, Janmoni [1 ]
Baruah, Smriti [1 ]
机构
[1] Madanapalle Institute of Technology & Science, Andhra Pradesh, Madanapalle
来源
Micro and Nanostructures | 2025年 / 207卷
关键词
Cs[!sub]2[!/sub]AgInBr[!sub]6[!/sub; CsSnI[!sub]3[!/sub; Dual absorbers; Inorganic perovskite; Power conversion efficiency;
D O I
10.1016/j.micrna.2025.208274
中图分类号
学科分类号
摘要
This article introduces an innovative dual-absorber solar cell design using Dicesium Silver Indium Hexabromide (Cs2AgInBr6) and Cesium Tin Tri-iodide (CsSnI3) in a FTO/ZnO/Cs2AgInBr6/CsSnI3/CFTS heterojunction architecture. The optimal energy band alignment, along with structural and electrical parameter optimization of the Cs2AgInBr6/CsSnI3 dual-absorber configuration, enhances power conversion efficiency (PCE), overcoming limitations in single-absorber Cs2AgInBr6 perovskite photovoltaic cells (PPCs). This enhancement is due to the synergistic effects between absorbers, improving light absorption and charge carrier dynamics. Using SCAPS-1D, critical parameters such as absorber thickness, defect density, and carrier transport layers were optimized. The dual-absorber achieved a PCE of 25.32 %, Voc of 0.95 V, fill factor of 86 %, and Jsc of 31.9 mA/cm2, outperforming the 11.96 % PCE of single-absorber PPCs. A peak quantum efficiency (QE) of 90 % spanning over 300–1000 nm wavelength range was also obtained, surpassing the 79 % QE of single absorbers over 300–830 nm. © 2025 Elsevier Ltd
引用
收藏
相关论文
共 74 条
[1]  
Noman M., Khana Z., Tariq Jan S., A comprehensive review on the advancements and challenges in perovskite solar cell technology, RSC Adv., 14, (2024)
[2]  
Zhao Y., Xiang H., Ran R., Zhou W., Wang W., Shao Z., Beyond two-dimension: one- and zero-dimensional halide perovskites as new-generation passivators for high-performance perovskite solar cells, J. Energy Chem., 83, pp. 189-208, (2023)
[3]  
Baruah S., Borah J., Bhattarai S., Maity S., Optimization of all inorganic perovskite solar cell with dual active layers for beyond 29% efficiency, Sol. Energy, 263, (2023)
[4]  
Song L., Perovskite solar cells toward industrialization: screen printed perovskite films, Materials Reports: Energy, 2, (2022)
[5]  
Pandit N., Singh R., Kamlesh P.K., Et al., Study of chalcogenide-based metal perovskites BaZrX3 (X = S and Se): DFT insight into fundamental properties for sustainable energy generation using AMPS-1D, J. Comput. Electron., 23, pp. 1014-1028, (2024)
[6]  
Min J., Choi Y., Kim D., Park T., Beyond imperfections: exploring defects for breakthroughs in perovskite solar cell research, Adv. Energy Mater., 14, (2024)
[7]  
Wang Y., Li T., Chen X., Zhang L., High-performance flexible lead-free perovskite solar cells based on tin-halide perovskite films doped by reductant metal halide, Mater. Lett., 321, (2022)
[8]  
Deepika A.S., Verma U.K., Ameen S., Optimization of lead-free materials-based perovskite solar cell using SCAPS-1D simulation, J. Phys. Chem. Solid., 186, (2024)
[9]  
Pandey R., Et al., Halide composition engineered a non-toxic perovskite–silicon tandem solar cell with 30.7% conversion efficiency, ACS Appl. Electron. Mater., 5, pp. 5303-5315, (2023)
[10]  
Pandey R., Et al., Device simulations: toward the design of >13% efficient PbS colloidal quantum dot solar cell, Sol. Energy, 207, pp. 893-902, (2020)