Microbial strategies on polyhydroxyalkanoates production from food waste to support the circular bioeconomy

被引:0
作者
Liu, Xiaoji [1 ]
Wang, Zhihua [1 ]
Zhang, Yingying [1 ]
Shah, Aamer Ali [3 ]
Gong, Chunjie [2 ]
机构
[1] Cecep Feixi WTE Co Ltd, Hefei 231241, Peoples R China
[2] Hubei Univ Technol, Cooperat Innovat Ctr Ind Fermentat,Minist Educ, Natl 111 Ctr Cellular Regulat & Mol Pharmaceut, Key Lab Fermentat Engn,Minist Educ & Hubei Prov,Mi, Wuhan 430068, Peoples R China
[3] Quaid i Azam Univ, Fac Biol Sci, Dept Microbiol, Islamabad 45320, Pakistan
基金
中国国家自然科学基金;
关键词
Food waste; Polyhydroxyalkanoates; Production; LOW-COST PRODUCTION; ESCHERICHIA-COLI; PHA SYNTHASE; HALOMONAS-BLUEPHAGENESIS; COPOLYMER; POLYHYDROXYBUTYRATE; IDENTIFICATION; BIOSYNTHESIS; CONVERSION; BACTERIA;
D O I
10.1016/j.ijbiomac.2025.146023
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The effective utilization of food waste is beneficial for valuable chemicals production, green development, ecological protection and circular bioeconomy. Biological manufacturing is deemed to be more conducive than chemical processing for the development of circular economy. The food waste bioconversion exhibits great potential to generate polyhydroxyalkanoates and reduce pollution. With the development of bioengineering, microbial chassis cells are employed to produce polyhydroxyalkanoates. However, additional deep investigation in microbial strategies for polyhydroxyalkanoates production from food waste is urgently required. In this paper, the microbial strategies including metabolic engineering and synthetic biology for polyhydroxyalkanoates production from food waste were highlighted. At last, the application prospect of polyhydroxyalkanoates was introduced in circular bio-economy.
引用
收藏
页数:12
相关论文
共 144 条
[1]   Current trends in the production of biodegradable bioplastics: The case of polyhydroxyalkanoates [J].
Alcantara, Joao Medeiros Garcia ;
Distante, Francesco ;
Storti, Giuseppe ;
Moscatelli, Davide ;
Morbidelli, Massimo ;
Sponchioni, Mattia .
BIOTECHNOLOGY ADVANCES, 2020, 42
[2]   Replacement of the catalytic nucleophile cysteine-296 by serine in class II polyhydroxyalkanoate synthase from Pseudomonas aeruginosa-mediated synthesis of a new polyester:: identification of catalytic residues [J].
Amara, AA ;
Rehm, BHA .
BIOCHEMICAL JOURNAL, 2003, 374 :413-421
[3]   The Nucleoid Occlusion Protein SlmA Binds to Lipid Membranes [J].
Angel Robles-Ramos, Miguel ;
Margolin, William ;
Sobrinos-Sanguino, Marta ;
Alfonso, Carlos ;
Rivas, German ;
Monterroso, Begona ;
Zorrilla, Silvia .
MBIO, 2020, 11 (05) :1-13
[4]   Polyhydroxyalkanoate production from sucrose by Cupriavidus necator strains harboring csc genes from Escherichia coli W [J].
Arikawa, Hisashi ;
Matsumoto, Keiji ;
Fujiki, Tetsuya .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2017, 101 (20) :7497-7507
[5]   Harnessing Polyhydroxyalkanoates and Pressurized Gyration for Hard and Soft Tissue Engineering [J].
Basnett, Pooja ;
Matharu, Rupy K. ;
Taylor, Caroline S. ;
Illangakoon, Upulitha ;
Dawson, Jonathan, I ;
Kanczler, Janos M. ;
Behbehani, Mehrie ;
Humphrey, Eleanor ;
Majid, Qasim ;
Lukasiewicz, Barbara ;
Nigmatullin, Rinat ;
Heseltine, Phoebe ;
Oreffo, Richard O. C. ;
Haycock, John W. ;
Terracciano, Cesare ;
Harding, Sian E. ;
Edirisinghe, Mohan ;
Roy, Ipsita .
ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (28) :32624-32639
[6]   Biowaste-to-bioplastic (polyhydroxyalkanoates): Conversion technologies, strategies, challenges, and perspective [J].
Bhatia, Shashi Kant ;
Otari, Sachin, V ;
Jeon, Jong-Min ;
Gurav, Ranjit ;
Choi, Yong-Keun ;
Bhatia, Ravi Kant ;
Pugazhendhi, Arivalagan ;
Kumar, Vinod ;
Banu, J. Rajesh ;
Yoon, Jeong-Jun ;
Choi, Kwon-Young ;
Yang, Yung-Hun .
BIORESOURCE TECHNOLOGY, 2021, 326
[7]   Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) production from engineered Ralstonia eutropha using synthetic and anaerobically digested food waste derived volatile fatty acids [J].
Bhatia, Shashi Kant ;
Gurav, Ranjit ;
Choi, Tae-Rim ;
Jung, Hye-Rim ;
Yang, Soo-Yeon ;
Song, Hun-Suk ;
Jeon, Jong-Min ;
Kim, Jae-Seok ;
Lee, Yoo-Kyung ;
Yang, Yung-Hun .
INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2019, 133 :1-10
[8]   Production of (3-hydroxybutyrate-co-3-hydroxyhexanoate) copolymer from coffee waste oil using engineered Ralstonia eutropha [J].
Bhatia, Shashi Kant ;
Kim, Jung-Ho ;
Kim, Min-Sun ;
Kim, Junyoung ;
Hong, Ju Won ;
Hong, Yoon Gi ;
Kim, Hyun-Joong ;
Jeon, Jong-Min ;
Kim, Sang-Hyoun ;
Ahn, Jungoh ;
Lee, Hongweon ;
Yang, Yung-Hun .
BIOPROCESS AND BIOSYSTEMS ENGINEERING, 2018, 41 (02) :229-235
[9]   Engineering Cupriavidus necator DSM 545 for the one-step conversion of starchy waste into polyhydroxyalkanoates [J].
Brojanigo, Silvia ;
Gronchi, Nicoletta ;
Cazzorla, Tiziano ;
Wong, Tuck Seng ;
Basaglia, Marina ;
Favaro, Lorenzo ;
Casella, Sergio .
BIORESOURCE TECHNOLOGY, 2022, 347
[10]   Conversion of Starchy Waste Streams into Polyhydroxyalkanoates Using Cupriavidus necator DSM 545 [J].
Brojanigo, Silvia ;
Parro, Elettra ;
Cazzorla, Tiziano ;
Favaro, Lorenzo ;
Basaglia, Marina ;
Casella, Sergio .
POLYMERS, 2020, 12 (07)