Detection of Hypertrophic Cardiomyopathy on Electrocardiogram Using Artificial Intelligence

被引:0
作者
Hillis, James M. [1 ,2 ,4 ]
Bizzo, Bernardo C. [1 ,3 ,4 ]
Mercaldo, Sarah F. [1 ,3 ,4 ]
Ghatak, Ankita [1 ]
Macdonald, Ashley L. [1 ]
Halle, Madeleine A. [1 ]
Schultz, Alexander S. [1 ]
L'Italien, Eric [1 ]
Tam, Victor [1 ]
Bart, Nicole K. [4 ,5 ]
Moura, Filipe A. [4 ,5 ]
Awad, Amine [2 ,4 ,6 ]
Bargiela, David [2 ,4 ,6 ]
Dagen, Sarajune [7 ]
Toland, Danielle [6 ]
Blood, Alexander J. [4 ,5 ]
Gross, David A. [4 ,5 ]
Jering, Karola S. [4 ,5 ]
Lopes, Mathew S. [4 ,5 ]
Marston, Nicholas A. [4 ,5 ]
Nauffal, Victor D. [4 ,5 ]
Dreyer, Keith J. [1 ,3 ,4 ]
Scirica, Benjamin M. [1 ,4 ,5 ]
Ho, Carolyn Y. [4 ,5 ]
机构
[1] Mass Gen Brigham Al, 399 Revolution Dr, Boston, MA 02145 USA
[2] Massachusetts Gen Hosp, Dept Neurol, Boston, MA USA
[3] Massachusetts Gen Hosp, Dept Radiol, Boston, MA USA
[4] Harvard Med Sch, Massachusetts Gen Hosp, Boston, MA 02115 USA
[5] Brigham & Womens Hosp, Div Nucl Med, Boston, MA USA
[6] Brigham & Womens Hosp, Dept Neurol, Boston, MA USA
[7] Brigham & Womens Hosp, Dept Neurosurg, Boston, MA USA
关键词
artificial intelligence; cardiomyopathies; deep learning; electrocardiography; ECHOCARDIOGRAPHIC ANALYSIS; POPULATION; PREVALENCE;
D O I
10.1161/CIRCHEARTFAILURE.124.012667
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
BACKGROUND:Hypertrophic cardiomyopathy (HCM) is associated with significant morbidity and mortality, including sudden cardiac death in the young. Its prevalence is estimated to be 1 in 500, although many people are undiagnosed. The ability to screen electrocardiograms for its presence could improve detection and enable earlier diagnosis. This study evaluated the accuracy of an artificial intelligence device (Viz HCM) in detecting HCM based on a 12-lead electrocardiogram.METHODS:The device was previously trained using deep learning and provides a binary outcome (HCM suspected or not suspected). This study included 293 HCM-positive and 2912 HCM-negative cases, which were selected from 3 hospitals based on chart review incorporating billing diagnostic codes, cardiac imaging, and electrocardiogram features. The device produced an output for 291 (99.3%) HCM-positive and 2905 (99.8%) HCM-negative cases.RESULTS:The device identified HCM with sensitivity of 68.4% (95% CI, 62.8-73.5%), specificity of 99.1% (95% CI, 98.7-99.4%), and area under the curve of 0.975 (95% CI, 0.965-0.982). With assumed population prevalence of 0.002 (1 in 500), the positive predictive value was 13.7% (95% CI, 10.1-19.9%) and the negative predictive value was 99.9% (95% CI, 99.9-99.9%). The device demonstrated broadly consistent performance across demographic and technical subgroups.CONCLUSIONS:The device identified HCM based on a 12-lead electrocardiogram with good performance. Coupled with clinical expertise, it has the potential to augment HCM detection and diagnosis.
引用
收藏
页数:10
相关论文
共 19 条
[1]  
Desai MY., 2025, JACC Clin Electrophysiol, pS2405
[2]   The electrocardiogram in the diagnosis and management of patients with hypertrophic cardiomyopathy [J].
Finocchiaro, Gherardo ;
Sheikh, Nabeel ;
Biagini, Elena ;
Papadakis, Michael ;
Maurizi, Nicolo' ;
Sinagra, Gianfranco ;
Pelliccia, Antonio ;
Rapezzi, Claudio ;
Sharma, Sanjay ;
Olivotto, Iacopo .
HEART RHYTHM, 2020, 17 (01) :142-151
[3]   The REDCap consortium: Building an international community of software platform partners [J].
Harris, Paul A. ;
Taylor, Robert ;
Minor, Brenda L. ;
Elliott, Veida ;
Fernandez, Michelle ;
O'Neal, Lindsay ;
McLeod, Laura ;
Delacqua, Giovanni ;
Delacqua, Francesco ;
Kirby, Jacqueline ;
Duda, Stephany N. .
JOURNAL OF BIOMEDICAL INFORMATICS, 2019, 95
[4]   Research electronic data capture (REDCap)-A metadata-driven methodology and workflow process for providing translational research informatics support [J].
Harris, Paul A. ;
Taylor, Robert ;
Thielke, Robert ;
Payne, Jonathon ;
Gonzalez, Nathaniel ;
Conde, Jose G. .
JOURNAL OF BIOMEDICAL INFORMATICS, 2009, 42 (02) :377-381
[5]   Evaluation of an Artificial Intelligence Model for Detection of Pneumothorax and Tension Pneumothorax in Chest Radiographs [J].
Hillis, James M. ;
Bizzo, Bernardo C. ;
Mercaldo, Sarah ;
Chin, John K. ;
Newbury-Chaet, Isabella ;
Digumarthy, Subba R. ;
Gilman, Matthew D. ;
Muse, Victorine V. ;
Bottrell, Georgie ;
Seah, Jarrel C. Y. ;
Jones, Catherine M. ;
Kalra, Mannudeep K. ;
Dreyer, Keith J. .
JAMA NETWORK OPEN, 2022, 5 (12)
[6]   Detection of Hypertrophic Cardiomyopathy Using a Convolutional Neural Network-Enabled Electrocardiogram [J].
Ko, Wei-Yin ;
Siontis, Konstantinos C. ;
Attia, Zachi, I ;
Carter, Rickey E. ;
Kapa, Suraj ;
Ommen, Steve R. ;
Demuth, Steven J. ;
Ackerman, Michael J. ;
Gersh, Bernard J. ;
Arruda-Olson, Adelaide M. ;
Geske, Jeffrey B. ;
Asirvatham, Samuel J. ;
Lopez-Jimenez, Francisco ;
Nishimura, Rick A. ;
Friedman, Paul A. ;
Noseworthy, Peter A. .
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2020, 75 (07) :722-733
[7]   Clinical Course and Management of Hypertrophic Cardiomyopathy [J].
Maron, Barry J. .
NEW ENGLAND JOURNAL OF MEDICINE, 2018, 379 (07) :655-668
[8]   Prevalence of hypertrophic cardiomyopathy in a population-based sample of American Indians aged 51 to 77 years (the Strong Heart Study) [J].
Maron, BJ ;
Spirito, P ;
Roman, MJ ;
Paranicas, M ;
Okin, PM ;
Best, LG ;
Lee, ET ;
Devereux, RB .
AMERICAN JOURNAL OF CARDIOLOGY, 2004, 93 (12) :1510-1514
[9]   PREVALENCE OF HYPERTROPHIC CARDIOMYOPATHY IN A GENERAL-POPULATION OF YOUNG-ADULTS - ECHOCARDIOGRAPHIC ANALYSIS OF 4111 SUBJECTS IN THE CARDIA STUDY [J].
MARON, BJ ;
GARDIN, JM ;
FLACK, JM ;
GIDDING, SS ;
KUROSAKI, TT ;
BILD, DE .
CIRCULATION, 1995, 92 (04) :785-789
[10]   Clinical profile of hypertrophic cardiomyopathy identified de novo in rural communities [J].
Maron, BJ ;
Mathenge, R ;
Casey, SA ;
Poliac, LC ;
Longe, TF .
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 1999, 33 (06) :1590-1595