Machine learning for image-based cell classification, detection, and segmentation in microfluidic biosensors: A computer vision perspective

被引:0
作者
Chen, Kuo [1 ]
Tang, Jingyuan [1 ]
Wen, Ling [1 ]
Ma, Zhulin [1 ]
Liu, Shan [2 ,3 ]
Li, Diangeng [4 ]
机构
[1] Chongqing Univ Posts & Telecommun, Sch Comp Sci & Technol, Chongqing 400065, Peoples R China
[2] Univ Elect Sci & Technol, Sichuan Acad Med Sci, Dept Lab Med, Chengdu 610072, Sichuan, Peoples R China
[3] Univ Elect Sci & Technol, Sichuan Prov Peoples Hosp, Chengdu 610072, Peoples R China
[4] Capital Med Univ, Beijing Ditan Hosp, Natl Ctr Infect Dis Beijing, Dept Acad Res, 8th Jingshun East Rd, Beijing 100015, Peoples R China
基金
国家重点研发计划;
关键词
Microfluidic biosensor; Machine learning; Computer vision; Cell analysis; LABEL-FREE; ANALYSIS SYSTEMS; HIGH-THROUGHPUT; DEEP; SENSOR; BLOOD;
D O I
10.1016/j.microc.2025.114357
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Microfluidic biosensors, when combined with microscopy imaging, provide continuous observation of cells during growth and division, generating vast quantities of visual data. The integration of machine learning (ML) enables real-time analysis of these images, enhancing the monitoring of cell behavior and dynamic changes. This offers critical insights for cell biology and disease research, representing a typical problem in computer vision (CV). This paper specifically focuses on cell analysis tasks, including cell classification, detection, and segmentation, within the microfluidic biosensor framework. We review the application of ML techniques for these three core tasks, discussing both traditional methods and end-to-end deep learning (DL) models. Emphasizing how ML improves the accuracy and efficiency of microfluidic biosensor imaging, we highlight the growing potential for personalized medicine, disease diagnosis, and drug development. Finally, we analyze current technological trends and propose recommendations for future research in cell analysis using microfluidic biosensors.
引用
收藏
页数:16
相关论文
共 106 条
[1]   Classification of hemoglobin fractions in the liquid state using Raman spectroscopy combined with machine learning [J].
Abbasi, Sara ;
Feizpour, Mehdi ;
Weets, Ilse ;
Liu, Qing ;
Thienpont, Hugo ;
Ferranti, Francesco ;
Ottevaere, Heidi .
MICROCHEMICAL JOURNAL, 2023, 194
[2]   D-CryptO: deep learning-based analysis of colon organoid morphology from brightfield images [J].
Abdul, Lyan ;
Xu, Jocelyn ;
Sotra, Alexander ;
Chaudary, Abbas ;
Gao, Jerry ;
Rajasekar, Shravanthi ;
Anvari, Nicky ;
Mahyar, Hamidreza ;
Zhang, Boyang .
LAB ON A CHIP, 2022, 22 (21) :4118-4128
[3]   Deep-LUMEN assay - human lung epithelial spheroid classification from brightfield images using deep learning [J].
Abdul, Lyan ;
Rajasekar, Shravanthi ;
Lin, Dawn S. Y. ;
Venkatasubramania Raja, Sibi ;
Sotra, Alexander ;
Feng, Yuhang ;
Liu, Amy ;
Zhang, Boyang .
LAB ON A CHIP, 2020, 20 (24) :4623-4631
[4]   On the robustness of machine learning algorithms toward microfluidic distortions for cell classification via on-chip fluorescence microscopy [J].
Ahmad, Ali ;
Sala, Federico ;
Paie, Petra ;
Candeo, Alessia ;
D'Annunzio, Sarah ;
Zippo, Alessio ;
Frindel, Carole ;
Osellame, Roberto ;
Bragheri, Francesca ;
Bassi, Andrea ;
Rousseau, David .
LAB ON A CHIP, 2022, 22 (18) :3453-3463
[5]   Integrating machine learning and biosensors in microfluidic devices: A review [J].
Antonelli, Gianni ;
Filippi, Joanna ;
D'Orazio, Michele ;
Curci, Giorgia ;
Casti, Paola ;
Mencattini, Arianna ;
Martinelli, Eugenio .
BIOSENSORS & BIOELECTRONICS, 2024, 263
[6]   SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation [J].
Badrinarayanan, Vijay ;
Kendall, Alex ;
Cipolla, Roberto .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (12) :2481-2495
[7]   Morphologically constrained and data informed cell segmentation of budding yeast [J].
Bakker, Elco ;
Swain, Peter S. ;
Crane, Matthew M. .
BIOINFORMATICS, 2018, 34 (01) :88-96
[8]   A point of care sensor for detection of alcohols, aldehydes and esters in urinary metabolites of war veterans injured by sulfur mustard [J].
Bordbar, Mohammad Mahdi ;
Nobakht, M. Gh. Fatemeh ;
Sheini, Azarmidokht ;
Alborz, Maryam ;
Parvin, Shahram ;
Ghanei, Mostafa ;
Kulahlioglu, Neslihan ;
Samadinia, Hosein ;
Bagheri, Hasan .
RSC ADVANCES, 2024, 14 (40) :29518-29525
[9]   Non-invasive detection of COVID-19 using a microfluidic-based colorimetric sensor array sensitive to urinary metabolites [J].
Bordbar, Mohammad Mahdi ;
Samadinia, Hosein ;
Sheini, Azarmidokht ;
Aboonajmi, Jasem ;
Javid, Mohammad ;
Sharghi, Hashem ;
Ghanei, Mostafa ;
Bagheri, Hasan .
MICROCHIMICA ACTA, 2022, 189 (09)
[10]  
Chen T., 2020, INT C MACH LEARN PML, P1597