A 220 GHz Reconfigurable Reflectarray Antenna Using GaN HEMT Device

被引:1
作者
Pan, Xiaotian [1 ]
Yang, Fan [3 ]
Liu, Fengfeng [2 ]
Jiang, Chunping [2 ]
Xu, Shenheng [3 ]
机构
[1] Beijing Inst Radio Measurement, Beijing 100854, Peoples R China
[2] Chinese Acad Sci, Suzhou Inst Nanotech & Nanobion, Suzhou 215123, Peoples R China
[3] Tsinghua Univ, Dept Elect Engn, Beijing 100084, Peoples R China
关键词
HEMTs; MODFETs; Reflector antennas; Gallium nitride; Resistance; Logic gates; Performance evaluation; Fabrication; Training; Substrates; High electron mobility transistor (HEMT); reconfigurable; reflectarray; submillimeter;
D O I
10.1109/TTHZ.2025.3563715
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Reconfigurable reflectarray antennas (RRAs) at submillimeter and terahertz frequencies are critical for communications and imaging applications. This article examines, fabricates, and measures an RRA integrated with a gallium nitride (GaN) high electron mobility transistor (HEMT) device, operating at 220 GHz. A reflectarray element on a sapphire substrate, incorporating a GaN HEMT device and a matching circuit, is designed to achieve a 1-bit phase shift of the reflected wave. Detailed analyses of the HEMT device model and the submillimeter element design are conducted. The proposed RRA is fabricated using standard chip processes, resulting in a 16 x 16 element array on an 11.2 x 11.2 x 0.1 mm(3) chip. The 1-bit phase-shift performance is validated through two-state reflection coefficient measurements. Due to the fabrication challenges of element control, a column-control biasing network is implemented. The 1-D beam-scanning capability of the RRA prototype is experimentally demonstrated at 220 GHz, achieving a scanning angle of up to 40 degrees. The experimental results demonstrate strong agreement with theoretical predictions.
引用
收藏
页码:704 / 714
页数:11
相关论文
共 23 条
[1]   Reconfigurable Folded Reflectarray Antenna Based Upon Liquid Crystal Technology [J].
Bildik, Saygin ;
Dieter, Sabine ;
Fritzsch, Carsten ;
Menzel, Wolfgang ;
Jakoby, Rolf .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2015, 63 (01) :122-132
[2]   AlGaN/GaN HEMT With 300-GHz fmax [J].
Chung, Jinwook W. ;
Hoke, William E. ;
Chumbes, Eduardo M. ;
Palacios, Tomas .
IEEE ELECTRON DEVICE LETTERS, 2010, 31 (03) :195-197
[3]  
Elayan H., 2018, P IEEE INT C ADV COM, P1
[4]   Analysis of GaN HEMTs Switching Transients Using Compact Model [J].
Faramehr, Soroush ;
Igic, Petar .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2017, 64 (07) :2900-2905
[5]   A Bifocal Ellipsoidal Gregorian Reflector System for THz Imaging Applications [J].
Garcia-Pino, Antonio ;
Llombart, Nuria ;
Gonzalez-Valdes, Borja ;
Rubinos-Lopez, Oscar .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2012, 60 (09) :4119-4129
[6]   Terahertz Imaging and Sensing Applications With Silicon-Based Technologies [J].
Hillger, Philipp ;
Grzyb, Janusz ;
Jain, Ritesh ;
Pfeiffer, Ullrich R. .
IEEE TRANSACTIONS ON TERAHERTZ SCIENCE AND TECHNOLOGY, 2019, 9 (01) :1-19
[7]   60-GHz Electronically Reconfigurable Large Reflectarray Using Single-Bit Phase Shifters [J].
Kamoda, Hirokazu ;
Iwasaki, Toru ;
Tsumochi, Jun ;
Kuki, Takao ;
Hashimoto, Osamu .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2011, 59 (07) :2524-2531
[8]   Real-time programmable metasurface for terahertz multifunctional wave front engineering [J].
Lan, Feng ;
Wang, Luyang ;
Zeng, Hongxin ;
Liang, Shixiong ;
Song, Tianyang ;
Liu, Wenxin ;
Mazumder, Pinaki ;
Yang, Ziqiang ;
Zhang, Yaxin ;
Mittleman, Daniel M. .
LIGHT-SCIENCE & APPLICATIONS, 2023, 12 (01)
[9]   Millimeter-wave MMIC passive HEMT switches using traveling-wave concept [J].
Lin, KY ;
Tu, WH ;
Chen, PY ;
Chang, HY ;
Wang, H ;
Wu, RB .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2004, 52 (08) :1798-1808
[10]   A Radiation Viewpoint of Reconfigurable Reflectarray Elements: Performance Limit, Evaluation Criterion, and Design Process [J].
Liu C. ;
Wu Y. ;
Zhou S. ;
Yang F. ;
Ren Y. ;
Xu S. ;
Li M. .
IEEE Transactions on Antennas and Propagation, 2023, 71 (10) :7881-7891