Orderly Disorder in Point Cloud Domain

被引:6
作者
Ghahremani, Morteza [1 ]
Tiddeman, Bernard [1 ]
Liu, Yonghuai [2 ]
Behera, Ardhendu [2 ]
机构
[1] Aberystwyth Univ, Dept Comp Sci, Aberystwyth, Dyfed, Wales
[2] Edge Hill Univ, Dept Comp Sci, Ormskirk, Lancs, England
来源
COMPUTER VISION - ECCV 2020, PT XXVIII | 2020年 / 12373卷
基金
英国生物技术与生命科学研究理事会;
关键词
Point cloud; Deep neural network; Orderly disorder; Segmentation; Classification;
D O I
10.1007/978-3-030-58604-1_30
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the real world, out-of-distribution samples, noise and distortions exist in test data. Existing deep networks developed for point cloud data analysis are prone to overfitting and a partial change in test data leads to unpredictable behaviour of the networks. In this paper, we propose a smart yet simple deep network for analysis of 3D models using 'orderly disorder' theory. Orderly disorder is a way of describing the complex structure of disorders within complex systems. Our method extracts the deep patterns inside a 3D object via creating a dynamic link to seek the most stable patterns and at once, throws away the unstable ones. Patterns are more robust to changes in data distribution, especially those that appear in the top layers. Features are extracted via an innovative cloning decomposition technique and then linked to each other to form stable complex patterns. Our model alleviates the vanishing-gradient problem, strengthens dynamic link propagation and substantially reduces the number of parameters. Extensive experiments on challenging benchmark datasets verify the superiority of our light network on the segmentation and classification tasks, especially in the presence of noise wherein our network's performance drops less than 10% while the state-of-the-art networks fail to work.
引用
收藏
页码:494 / 509
页数:16
相关论文
共 29 条
[1]  
[Anonymous], 1996, Chaos and order in the capital markets
[2]  
a new view of cycles, prices, and market volatility
[3]  
Atzmon M, 2018, Arxiv, DOI arXiv:1803.10091
[4]   Singular Value Decomposition of Complexes [J].
Brake, Danielle A. ;
Hauenstein, Jonathan D. ;
Schreyer, Frank-Olaf ;
Sommese, Andrew J. ;
Stillman, Michael E. .
SIAM JOURNAL ON APPLIED ALGEBRA AND GEOMETRY, 2019, 3 (03) :507-522
[5]   Shape Completion using 3D-Encoder-Predictor CNNs and Shape Synthesis [J].
Dai, Angela ;
Qi, Charles Ruizhongtai ;
Niessner, Matthias .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :6545-6554
[6]   PCPNET Learning Local Shape Properties from Raw Point Clouds [J].
Guerrero, Paul ;
Kleiman, Yanir ;
Ovsjanikov, Maks ;
Mitra, Niloy J. .
COMPUTER GRAPHICS FORUM, 2018, 37 (02) :75-85
[7]   Densely Connected Convolutional Networks [J].
Huang, Gao ;
Liu, Zhuang ;
van der Maaten, Laurens ;
Weinberger, Kilian Q. .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :2261-2269
[8]   Escape from Cells: Deep Kd-Networks for the Recognition of 3D Point Cloud Models [J].
Klokov, Roman ;
Lempitsky, Victor .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, :863-872
[9]   Large-scale Point Cloud Semantic Segmentation with Superpoint Graphs [J].
Landrieu, Loic ;
Simonovsky, Martin .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :4558-4567
[10]   SO-Net: Self-Organizing Network for Point Cloud Analysis [J].
Li, Jiaxin ;
Chen, Ben M. ;
Lee, Gim Hee .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :9397-9406