TITAN: Future Forecast using Action Priors

被引:87
作者
Malla, Srikanth [1 ]
Dariush, Behzad [1 ]
Choi, Chiho [1 ]
机构
[1] Honda Res Inst Usa, San Jose, CA 95134 USA
来源
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2020) | 2020年
关键词
D O I
10.1109/CVPR42600.2020.01120
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We consider the problem of predicting the future trajectory of scene agents from egocentric views obtained from a moving platform. This problem is important in a variety of domains, particularly for autonomous systems making reactive or strategic decisions in navigation. In an attempt to address this problem, we introduce TITAN (Trajectory Inference using Targeted Action priors Network), a new model that incorporates prior positions, actions, and context to forecast future trajectory of agents and future ego-motion. In the absence of an appropriate dataset for this task, we created the TITAN dataset that consists of 700 labeled video-clips (with odometry) captured from a moving vehicle on highly interactive urban traffic scenes in Tokyo. Our dataset includes 50 labels including vehicle states and actions, pedestrian age groups, and targeted pedestrian action attributes that are organized hierarchically corresponding to atomic, simple/complex-contextual, transportive, and communicative actions. To evaluate our model, we conducted extensive experiments on the TITAN dataset, revealing significant performance improvement against baselines and state-of-the-art algorithms. We also report promising results from our Agent Importance Mechanism (AIM), a module which provides insight into assessment of perceived risk by calculating the relative influence of each agent on the future ego-trajectory. The dataset is available at https://usa.honda-ri.com/titan
引用
收藏
页码:11183 / 11193
页数:11
相关论文
共 60 条
[1]   Social LSTM: Human Trajectory Prediction in Crowded Spaces [J].
Alahi, Alexandre ;
Goel, Kratarth ;
Ramanathan, Vignesh ;
Robicquet, Alexandre ;
Li Fei-Fei ;
Savarese, Silvio .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :961-971
[2]  
[Anonymous], 2019, Autonomous Driving Dataset
[3]   Long-Term On-Board Prediction of People in Traffic Scenes under Uncertainty [J].
Bhattacharyya, Apratim ;
Fritz, Mario ;
Schiele, Bernt .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :4194-4202
[4]  
Heilbron FC, 2015, PROC CVPR IEEE, P961, DOI 10.1109/CVPR.2015.7298698
[5]   nuScenes: A multimodal dataset for autonomous driving [J].
Caesar, Holger ;
Bankiti, Varun ;
Lang, Alex H. ;
Vora, Sourabh ;
Liong, Venice Erin ;
Xu, Qiang ;
Krishnan, Anush ;
Pan, Yu ;
Baldan, Giancarlo ;
Beijbom, Oscar .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2020), 2020, :11618-11628
[6]   Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset [J].
Carreira, Joao ;
Zisserman, Andrew .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :4724-4733
[7]  
Carreira Joao, 2018, arXiv
[8]   TraPHic: Trajectory Prediction in Dense and Heterogeneous Traffic Using Weighted Interactions [J].
Chandra, Rohan ;
Bhattacharya, Uttaran ;
Bera, Aniket ;
Manocha, Dinesh .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :8475-8484
[9]   Argoverse: 3D Tracking and Forecasting with Rich Maps [J].
Chang, Ming-Fang ;
Lambert, John ;
Sangkloy, Patsorn ;
Singh, Jagjeet ;
Bak, Slawomir ;
Hartnett, Andrew ;
Wang, De ;
Carr, Peter ;
Lucey, Simon ;
Ramanan, Deva ;
Hays, James .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :8740-8749
[10]   Looking to Relations for Future Trajectory Forecast [J].
Choi, Chiho ;
Dariush, Behzad .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :921-930