Adaptive Ensemble Variants of Random Vector Functional Link Networks

被引:3
作者
Hu, Minghui [1 ]
Shi, Qiushi [1 ]
Suganthan, P. N. [1 ]
Tanveer, M. [2 ]
机构
[1] Nanyang Technol Univ, 50 Nanyang Ave, Singapore 639798, Singapore
[2] Indian Inst Technol Indore, Indore 453552, India
来源
NEURAL INFORMATION PROCESSING, ICONIP 2020, PT V | 2021年 / 1333卷
关键词
Random vector functional link; Ensemble classifiers; Deep neural networks; Adaptive boosting;
D O I
10.1007/978-3-030-63823-8_4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose a novel adaptive ensemble variant of random vector functional link (RVFL) networks. Adaptive ensemble RVFL networks assign different weights to the sub-classifiers according to prediction performance of single RVFL network. Generic Adaptive Ensemble RVFL is composed of a series of unrelated, independent weak classifiers. We also employ our adaptive ensemble method to the deep random vector functional link (dRVFL). Each layer in dRVFL can be regarded as a sub-classifier. However, instead of training several models independently, the sub-classifiers of dRVFL can be obtained by training a single network once.
引用
收藏
页码:30 / 37
页数:8
相关论文
共 19 条
[1]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[2]  
Dua D., 2017, UCI machine learning repository
[3]  
Freund Y., 1996, Machine Learning. Proceedings of the Thirteenth International Conference (ICML '96), P148
[4]  
Freund Y., 1995, J. Comput. Syst. Sci., P23, DOI DOI 10.1006/JCSS.1997.1504
[5]   The problem of overfitting [J].
Hawkins, DM .
JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 2004, 44 (01) :1-12
[6]   RIDGE REGRESSION - BIASED ESTIMATION FOR NONORTHOGONAL PROBLEMS [J].
HOERL, AE ;
KENNARD, RW .
TECHNOMETRICS, 1970, 12 (01) :55-&
[7]  
Katuwal R, 2019, Arxiv, DOI arXiv:1907.00350
[8]  
Klambauer G, 2017, ADV NEUR IN, V30
[9]   Deep learning [J].
LeCun, Yann ;
Bengio, Yoshua ;
Hinton, Geoffrey .
NATURE, 2015, 521 (7553) :436-444
[10]  
Livni R, 2014, ADV NEUR IN, V27