SPARSITY CONSTRAINED CONVOLUTIONAL AUTOENCODER NETWORK FOR HYPERSPECTRAL IMAGE UNMIXING

被引:3
作者
Zhao, Zhengang [1 ,2 ]
Wang, Hao [1 ]
Liang, Yuchen [1 ]
Huang, Tao [1 ]
Xiao, Yi [1 ]
Yu, Xianchuan [1 ]
机构
[1] Beijing Normal Univ, Sch Artificial Intelligence, Beijing 100875, Peoples R China
[2] Hebei Normal Univ, Business Coll, Shijiazhuang 050024, Hebei, Peoples R China
来源
2021 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM IGARSS | 2021年
基金
中国国家自然科学基金;
关键词
Hyperspectral image unmixing; deep learning; sparsity constraint; autoencoder network;
D O I
10.1109/IGARSS47720.2021.9553239
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Hyperspectral images (HSIs) contain a large number of mixed pixels due to low spatial resolution, which poses great challenges to the analyses and applications of HSIs. In recent years, convolutional neural networks (CNNs) have attained promising performance in HSI field. However, few CNN-based methods are proposed to solve the hyperspectral unmixing (HU) problem because of insufficient labeled samples. In this paper, we propose a novel unsupervised method, sparsity constrained convolutional autoencoder network (SC-CAE), for the HU problem. The data are preprocessed by principal component analysis (PCA) and then fed into the encoder network to obtain low dimensional representations. The decoder network is to reconstruct the original data from these low dimensional representations. Under the sparse constraint, the endmember matrix and the abundance matrix are obtained after many training epochs. The experiment results on synthetic dataset and real dataset show that our method has evident advantages compared with several state-of-the-art methods.
引用
收藏
页码:3317 / 3320
页数:4
相关论文
共 14 条
[1]   Hyperspectral Remote Sensing Data Analysis and Future Challenges [J].
Bioucas-Dias, Jose M. ;
Plaza, Antonio ;
Camps-Valls, Gustavo ;
Scheunders, Paul ;
Nasrabadi, Nasser M. ;
Chanussot, Jocelyn .
IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE, 2013, 1 (02) :6-36
[2]   Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches [J].
Bioucas-Dias, Jose M. ;
Plaza, Antonio ;
Dobigeon, Nicolas ;
Parente, Mario ;
Du, Qian ;
Gader, Paul ;
Chanussot, Jocelyn .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2012, 5 (02) :354-379
[3]   Hyperspectral subspace identification [J].
Bioucas-Dias, Jose M. ;
Nascimento, Jose M. P. .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2008, 46 (08) :2435-2445
[4]   Hyperspectral unmixing using deep convolutional autoencoder [J].
Elkholy, Menna M. ;
Mostafa, Marwa ;
Ebied, Hala M. ;
Tolba, Mohamed F. .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2020, 41 (12) :4797-4817
[5]   Sparse Unmixing of Hyperspectral Data [J].
Iordache, Marian-Daniel ;
Bioucas-Dias, Jose M. ;
Plaza, Antonio .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2011, 49 (06) :2014-2039
[6]   Robust Collaborative Nonnegative Matrix Factorization for Hyperspectral Unmixing [J].
Li, Jun ;
Bioucas-Dias, Jose M. ;
Plaza, Antonio ;
Liu, Lin .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (10) :6076-6090
[7]  
Miao L., 2007, IEEE T GEOSCI REMOTE, V45
[8]   Vertex component analysis: A fast algorithm to unmix hyperspectral data [J].
Nascimento, JMP ;
Dias, JMB .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2005, 43 (04) :898-910
[9]   Convolutional Autoencoder for Spectral Spatial Hyperspectral Unmixing [J].
Palsson, Burkni ;
Ulfarsson, Magnus O. ;
Sveinsson, Johannes R. .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (01) :535-549
[10]   Hyperspectral Unmixing via L1/2 Sparsity-Constrained Nonnegative Matrix Factorization [J].
Qian, Yuntao ;
Jia, Sen ;
Zhou, Jun ;
Robles-Kelly, Antonio .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2011, 49 (11) :4282-4297