Engineering Active Sites in Single-Atom Catalysts for Enhanced Oxygen Reduction Reaction: Strategies and Outlook

被引:0
作者
Lu, Xuanzhao [1 ]
Wang, Ziliang [1 ]
Yuan, Baozhen [1 ]
Zhu, Linan [2 ]
Shen, Meikun [3 ]
Du, Dan [2 ]
Zhou, Yang [4 ,5 ]
Zhu, Wenlei [1 ]
Lin, Yuehe [2 ]
机构
[1] Nanjing Univ, Sch Chem & Chem Engn, Frontiers Sci Ctr Crit Earth Mat Cycling, Sch Environm,State Key Lab Water Pollut Control &, Nanjing 210023, Peoples R China
[2] Washington State Univ, Sch Mech & Mat Engn, Pullman, WA 99164 USA
[3] Jacksonville State Univ, Dept Chem & Geochem, Jacksonville, AL 36265 USA
[4] Nanjing Univ Posts & Telecommun, State Key Lab Flexible Elect, Nanjing 210023, Peoples R China
[5] Nanjing Univ Posts & Telecommun, Inst Adv Mat IAM, Nanjing 210023, Peoples R China
基金
中国国家自然科学基金;
关键词
CARBON NANOWIRES; IRON; ELECTROCATALYSTS; NANOPARTICLES; IDENTIFICATION; NITROGEN;
D O I
10.1021/acsenergylett.5c01228
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Carbon-based single-atom catalysts (SACs) combine the advantages of atomic efficiency and unique electronic configuration, making them promising candidates for next-generation oxygen reduction reaction (ORR) catalysts. Despite their notable catalytic properties, a performance gap still exists between SACs and platinum-group-metal (PGM) catalysts. Generally, two primary strategies are employed to develop high-performance SACs: increasing the density or accessibility of active sites and enhancing their intrinsic activity. This Perspective examines various approaches to improve the electrocatalytic performance of SACs for the ORR, with a focus on active site engineering. We discuss methods to increase the number or accessibility of active sites along with an overview of key synthesis techniques. Additionally, we explore strategies to boost the intrinsic activity of these sites such as incorporating synergistic elements that modulate electronic structures and optimize intermediate adsorption and desorption. Finally, we highlight the remaining challenges and prospects for advancing SACs in the ORR applications.
引用
收藏
页数:12
相关论文
共 109 条
[1]   Preparation of Nonprecious Metal Electrocatalysts for the Reduction of Oxygen Using a Low-Temperature Sacrificial Metal [J].
Al-Zoubi, Talha ;
Zhou, Yu ;
Yin, Xi ;
Janicek, Blanka ;
Sun, Chengjun ;
Schulz, Charles E. ;
Zhang, Xiaohui ;
Gewirth, Andrew A. ;
Huang, Pinshane ;
Zelenay, Piotr ;
Yang, Hong .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (12) :5477-5481
[2]   Insights on forming N,O-coordinated Cu single-atom catalysts for electrochemical reduction CO2 to methane [J].
Cai, Yanming ;
Fu, Jiaju ;
Zhou, Yang ;
Chang, Yu-Chung ;
Min, Qianhao ;
Zhu, Jun-Jie ;
Lin, Yuehe ;
Zhu, Wenlei .
NATURE COMMUNICATIONS, 2021, 12 (01)
[3]   An asymmetrically coordinated ZnCoFe hetero-trimetallic atom catalyst enhances the electrocatalytic oxygen reaction [J].
Chen, Changli ;
Chai, Jing ;
Sun, Mengru ;
Guo, Tianqi ;
Lin, Jie ;
Zhou, Yurong ;
Sun, Zhiyi ;
Zhang, Fang ;
Zhang, Liang ;
Chen, Wenxing ;
Li, Yujing .
ENERGY & ENVIRONMENTAL SCIENCE, 2024, 17 (06) :2298-2308
[4]   Zinc-Mediated Template Synthesis of Fe-N-C Electrocatalysts with Densely Accessible Fe-Nx Active Sites for Efficient Oxygen Reduction [J].
Chen, Guangbo ;
Liu, Pan ;
Liao, Zhongquan ;
Sun, Fanfei ;
He, Yanghua ;
Zhong, Haixia ;
Zhang, Tao ;
Zschech, Ehrenfried ;
Chen, Mingwei ;
Wu, Gang ;
Zhang, Jian ;
Feng, Xinliang .
ADVANCED MATERIALS, 2020, 32 (08)
[5]   Atomically Dispersed Metal Catalysts for Oxygen Reduction [J].
Chen, Mengjie ;
He, Yanghua ;
Spendelow, Jacob S. ;
Wu, Gang .
ACS ENERGY LETTERS, 2019, 4 (07) :1619-1633
[6]   Atomic-Level Modulation of Electronic Density at Cobalt Single-Atom Sites Derived from Metal-Organic Frameworks: Enhanced Oxygen Reduction Performance [J].
Chen, Yuanjun ;
Gao, Rui ;
Ji, Shufang ;
Li, Haijing ;
Tang, Kun ;
Jiang, Peng ;
Hu, Haibo ;
Zhang, Zedong ;
Hao, Haigang ;
Qu, Qingyun ;
Liang, Xiao ;
Chen, Wenxing ;
Dong, Juncai ;
Wang, Dingsheng ;
Li, Yadong .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (06) :3212-3221
[7]   Enhanced oxygen reduction with single-atomic-site iron catalysts for a zinc-air battery and hydrogen-air fuel cell [J].
Chen, Yuanjun ;
Ji, Shufang ;
Zhao, Shu ;
Chen, Wenxing ;
Dong, Juncai ;
Cheong, Weng-Chon ;
Shen, Rongan ;
Wen, Xiaodong ;
Zheng, Lirong ;
Rykov, Alexandre I. ;
Cai, Shichang ;
Tang, Haolin ;
Zhuang, Zhongbin ;
Chen, Chen ;
Peng, Qing ;
Wang, Dingsheng ;
Li, Yadong .
NATURE COMMUNICATIONS, 2018, 9
[8]   Single-Atom Catalysts: Synthetic Strategies and Electrochemical Applications [J].
Chen, Yuanjun ;
Ji, Shufang ;
Chen, Chen ;
Peng, Qing ;
Wang, Dingsheng ;
Li, Yadong .
JOULE, 2018, 2 (07) :1242-1264
[9]   Isolated Single Iron Atoms Anchored on N-Doped Porous Carbon as an Efficient Electrocatalyst for the Oxygen Reduction Reaction [J].
Chen, Yuanjun ;
Ji, Shufang ;
Wang, Yanggang ;
Dong, Juncai ;
Chen, Wenxing ;
Li, Zhi ;
Shen, Rongan ;
Zheng, Lirong ;
Zhuang, Zhongbin ;
Wang, Dingsheng ;
Li, Yadong .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (24) :6937-6941
[10]   A specific demetalation of Fe-N4 catalytic sites in the micropores of NC_Ar + NH3 is at the origin of the initial activity loss of the highly active Fe/N/C catalyst used for the reduction of oxygen in PEM fuel cells [J].
Chenitz, Regis ;
Kramm, Ulrike I. ;
Lefevre, Michel ;
Glibin, Vassili ;
Zhang, Gaixia ;
Sun, Shuhui ;
Dodelet, Jean-Pol .
ENERGY & ENVIRONMENTAL SCIENCE, 2018, 11 (02) :365-382