Non-abelian Class Field Theory and Higher Dimensional Noncommutative Tori

被引:0
作者
Nikolaev, Igor V. [1 ]
机构
[1] St Johns Univ, Dept Math & Comp Sci, 8000 Utopia Pkwy, New York, NY 11439 USA
关键词
Drinfeld modules; Noncommutative tori; ALGEBRAS;
D O I
10.1007/s10468-025-10350-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study a relation between the Drinfeld modules and the even dimensional noncommutative tori. A non-abelian class field theory is developed based on this relation. Explicit generators of the Galois extensions are constructed.
引用
收藏
页数:13
相关论文
共 18 条
[1]  
Artin E., 1924, Abhandlungen aus dem Mathematischen Seminar der Hamburgerischen Universitat, V3, P89
[2]   An AF algebra associated with the Farey tessellation [J].
Boca, Florin P. .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2008, 60 (05) :975-1000
[3]   A class of polynomials [J].
Carlitz, Leonard .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1938, 43 (1-3) :167-182
[4]  
HERMAN RH, 1992, INT J MATH, V3, P827
[5]  
Langlands R.P., 1978, P ICM 1978 HELS, P165
[6]  
Li X., 2017, Abel Symp., V12, P191
[7]  
Nikolaev I.V., 2022, De Gruyter Studies in Math., V66
[8]  
Nikolaev I, 2018, RAMANUJAN J, V47, P417, DOI 10.1007/s11139-017-9969-3
[9]   LANGLANDS RECIPROCITY FOR THE EVEN-DIMENSIONAL NONCOMMUTATIVE TORI [J].
Nikolaev, Igor .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 139 (12) :4153-4162
[10]   On Cluster C*-Algebras [J].
Nikolaev, Igor V. .
JOURNAL OF FUNCTION SPACES, 2016, 2016