Artificial intelligence and anti-cancer drugs' response

被引:0
作者
Long, Xinrui [1 ,2 ,3 ,4 ,5 ,6 ]
Sun, Kai [1 ,3 ,4 ,5 ,6 ]
Lai, Sicen [1 ,2 ,3 ,4 ,5 ,6 ]
Liu, Yuancheng [1 ,3 ,4 ,5 ,6 ]
Su, Juan [1 ,3 ,4 ,5 ,6 ]
Chen, Wangqing [1 ,3 ,4 ,5 ,6 ]
Liu, Ruhan [1 ,3 ,4 ,5 ,6 ]
He, Xiaoyu [1 ,3 ,4 ,5 ,6 ]
Zhao, Shuang [1 ,3 ,4 ,5 ,6 ]
Huang, Kai [1 ,3 ,4 ,5 ,6 ]
机构
[1] Cent South Univ, Xiangya Hosp, Dept Dermatol, Changsha 410028, Peoples R China
[2] Cent South Univ, Xiangya Sch Med, Changsha 410031, Peoples R China
[3] Cent South Univ, Furong Lab, Changsha 410028, Peoples R China
[4] Natl Engn Res Ctr Personalized Diagnost & Therapeu, Changsha 410028, Peoples R China
[5] Cent South Univ, Xiangya Hosp, Hunan Key Lab Skin Canc & Psoriasis, Changsha 410028, Peoples R China
[6] Cent South Univ, Xiangya Hosp, Natl Clin Res Ctr Geriatr Disorders, Changsha 410028, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
KEY WORDS Drug resistance; Anti-cancer drugs; Artificial intelligence; Multi-omics; Precision medication; NEURAL-NETWORK; CANCER; RESISTANCE; PREDICTION; SIGNATURES; THERAPY; CHEMOTHERAPY; SENSITIVITY; CLASSIFIER; PACLITAXEL;
D O I
10.1016/j.apsb.2025.05.009
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Drug resistance is one of the key factors affecting the effectiveness of cancer treatment methods, including chemotherapy, radiotherapy, and immunotherapy. Its occurrence is related to factors such as mRNA expression and methylation within cancer cells. If drug resistance in patients can be accurately identified early, doctors can devise more effective treatment plans, which is of great significance for improving patients' survival rates and quality of life. Cancer drug resistance prediction based on artificial intelligence (AI) technology has emerged as a current research hotspot, demonstrating promising application prospects in guiding clinical individualized and precise medication for cancer patients. This review aims to comprehensively summarize the research progress in utilizing AI algorithms to analyze multiand histopathology, for predicting cancer drug resistance. It provides a detailed exposition of the processes involved in data processing , model construction, examines the current challenges faced in this field and future development directions, with the aim of better advancing the progress of precision medicine. <feminine ordinal indicator> 2025 The Authors. Published by Elsevier B.V. on behalf of Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:3355 / 3371
页数:17
相关论文
共 102 条
[11]   Tumor cell sensitivity to vemurafenib can be predicted from protein expression in a BRAF-V600E basket trial setting [J].
Carroll, Molly J. ;
Parent, Carl R. ;
Page, David ;
Kreeger, Pamela K. .
BMC CANCER, 2019, 19 (01)
[12]   Deep transfer learning of cancer drug responses by integrating bulk and single-cell RNA-seq data [J].
Chen, Junyi ;
Wu, Zhenyu ;
Qi, Ren ;
Ma, Anjun ;
Zhao, Jing ;
Xu, Dong ;
Li, Lang ;
Ma, Qin .
NATURE COMMUNICATIONS, 2022, 13 (01)
[13]   Predicting drug response of tumors from integrated genomic profiles by deep neural networks [J].
Chiu, Yu-Chiao ;
Chen, Hung-I Harry ;
Zhang, Tinghe ;
Zhang, Songyao ;
Gorthi, Aparna ;
Wang, Li-Ju ;
Huang, Yufei ;
Chen, Yidong .
BMC MEDICAL GENOMICS, 2019, 12 (Suppl 1)
[14]   RefDNN: a reference drug based neural network for more accurate prediction of anticancer drug resistance [J].
Choi, Jonghwan ;
Park, Sanghyun ;
Ahn, Jaegyoon .
SCIENTIFIC REPORTS, 2020, 10 (01)
[15]   The quest to overcome resistance to EGFR-targeted therapies in cancer [J].
Chong, Curtis R. ;
Jaenne, Pasi A. .
NATURE MEDICINE, 2013, 19 (11) :1389-1400
[16]   Modeling precision treatment of breast cancer [J].
Daemen, Anneleen ;
Griffith, Obi L. ;
Heiser, Laura M. ;
Wang, Nicholas J. ;
Enache, Oana M. ;
Sanborn, Zachary ;
Pepin, Francois ;
Durinck, Steffen ;
Korkola, James E. ;
Griffith, Malachi ;
Hur, Joe S. ;
Huh, Nam ;
Chung, Jongsuk ;
Cope, Leslie ;
Fackler, Mary Jo ;
Umbricht, Christopher ;
Sukumar, Saraswati ;
Seth, Pankaj ;
Sukhatme, Vikas P. ;
Jakkula, Lakshmi R. ;
Lu, Yiling ;
Mills, Gordon B. ;
Cho, Raymond J. ;
Collisson, Eric A. ;
van't Veer, Laura J. ;
Spellman, Paul T. ;
Gray, Joe W. .
GENOME BIOLOGY, 2013, 14 (10)
[17]   PDSM-LGCN: Prediction of drug sensitivity associated microRNAs via light graph convolution neural network [J].
Deng, Lei ;
Fan, Ziyu ;
Xu, Hanlin ;
Yu, Song .
METHODS, 2022, 205 :106-113
[18]   Radiomics Response Signature for Identification of Metastatic Colorectal Cancer Sensitive to Therapies Targeting EGFR Pathway [J].
Dercle, Laurent ;
Lu, Lin ;
Schwartz, Lawrence H. ;
Qian, Min ;
Tejpar, Sabine ;
Eggleton, Peter ;
Zhao, Binsheng ;
Piessevaux, Hubert .
JNCI-JOURNAL OF THE NATIONAL CANCER INSTITUTE, 2020, 112 (09) :902-912
[19]   Genomic signatures for paclitaxel and gemcitabine resistance in breast cancer derived by machine learning [J].
Dorman, Stephanie N. ;
Baranoua, Katherina ;
Knoll, Joan H. M. ;
Urquhart, Brad L. ;
Mariani, Gabriella ;
Carcangiu, Maria Luisa ;
Rogan, Peter K. .
MOLECULAR ONCOLOGY, 2016, 10 (01) :85-100
[20]   Cancer immunoediting: from immunosurveillance to tumor escape [J].
Dunn, GP ;
Bruce, AT ;
Ikeda, H ;
Old, LJ ;
Schreiber, RD .
NATURE IMMUNOLOGY, 2002, 3 (11) :991-998