WBF-ODAL: Weighted Boxes Fusion for 3D Object Detection from Automotive LiDAR Point Clouds

被引:0
作者
Katkoria, Dhvani [1 ,2 ]
Sreevalsan-Nair, Jaya [1 ,2 ]
Sati, Mayank [2 ]
Karunakaran, Sunil [2 ]
机构
[1] IIIT Bangalore, GVCL, Bangalore, Karnataka, India
[2] Ignitarium Inc Pvt Ltd, Bangalore, Karnataka, India
来源
2024 INTERNATIONAL CONFERENCE ON VEHICULAR TECHNOLOGY AND TRANSPORTATION SYSTEMS, ICVTTS | 2024年
关键词
LiDAR point clouds; Object detection; CNNs; ensemble methods; weighting function;
D O I
10.1109/ICVTTS62812.2024.10763933
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The use of Convolutional Neural Networks (CNNs) is the state-of-the-art for 3D object detection from automotive/vehicle LiDAR point clouds. However, not all models perform uniformly well across all classes. Hence, ensemble-based solutions are used where a mixture of experts (ME) approach has shown some promise. There is limited work on using the weighting function in this context, even though it is widely used in various other problem statements in computer vision. We propose the use of Weighted Boxes Fusion (WBF) for Object Detection from Automotive LiDAR point clouds (ODAL). We refer to our novel end-to-end workflow as WBF-ODAL. Our experiments on the nuScenes datasets using two different ensembles demonstrate that WBF-ODAL outperforms ME-ODAL for most classes.
引用
收藏
页数:6
相关论文
共 12 条
[1]   SemanticKITTI: A Dataset for Semantic Scene Understanding of LiDAR Sequences [J].
Behley, Jens ;
Garbade, Martin ;
Milioto, Andres ;
Quenzel, Jan ;
Behnke, Sven ;
Stachniss, Cyrill ;
Gall, Juergen .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :9296-9306
[2]   nuScenes: A multimodal dataset for autonomous driving [J].
Caesar, Holger ;
Bankiti, Varun ;
Lang, Alex H. ;
Vora, Sourabh ;
Liong, Venice Erin ;
Xu, Qiang ;
Krishnan, Anush ;
Pan, Yu ;
Baldan, Giancarlo ;
Beijbom, Oscar .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2020), 2020, :11618-11628
[3]   VISTA: Boosting 3D Object Detection via Dual Cross-VIew SpaTial Attention [J].
Deng, Shengheng ;
Liang, Zhihao ;
Sun, Lin ;
Jia, Kui .
2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, :8438-8447
[4]   Deep Multi-Modal Object Detection and Semantic Segmentation for Autonomous Driving: Datasets, Methods, and Challenges [J].
Feng, Di ;
Haase-Schutz, Christian ;
Rosenbaum, Lars ;
Hertlein, Heinz ;
Glaser, Claudius ;
Timm, Fabian ;
Wiesbeck, Werner ;
Dietmayer, Klaus .
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2021, 22 (03) :1341-1360
[5]   NEURAL NETWORKS AND THE BIAS VARIANCE DILEMMA [J].
GEMAN, S ;
BIENENSTOCK, E ;
DOURSAT, R .
NEURAL COMPUTATION, 1992, 4 (01) :1-58
[6]  
Katkoria Dhvani, 2024, P 5 INT C DEEP LEARN
[7]   PointPillars: Fast Encoders for Object Detection from Point Clouds [J].
Lang, Alex H. ;
Vora, Sourabh ;
Caesar, Holger ;
Zhou, Lubing ;
Yang, Jiong ;
Beijbom, Oscar .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :12689-12697
[8]  
Qiu HB, 2022, Arxiv, DOI arXiv:2207.02605
[9]   Weighted boxes fusion: Ensembling boxes from different object detection models [J].
Solovyev, Roman ;
Wang, Weimin ;
Gabruseva, Tatiana .
IMAGE AND VISION COMPUTING, 2021, 107
[10]   Center-based 3D Object Detection and Tracking [J].
Yin, Tianwei ;
Zhou, Xingyi ;
Krahenbuhl, Philipp .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, :11779-11788