Melanoma Detection Using Deep Learning

被引:4
作者
Favole, Florent [1 ]
Trocan, Maria [1 ]
Yilmaz, Ercument [2 ]
机构
[1] Inst Super Elect Paris, Paris, France
[2] Karadeniz Tech Univ, Trabzon, Turkey
来源
COMPUTATIONAL COLLECTIVE INTELLIGENCE, ICCCI 2020 | 2020年 / 12496卷
关键词
Image classification; Melanoma detection; Convolutional neural network;
D O I
10.1007/978-3-030-63007-2_64
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we describe a region of interest-based approach for the classification of dermoscopic images of skin lesions, which nowadays contributes to early identification of skin melanoma. Once the region of interest detected, it will be further processed in order to be used for training and hence classification using deep learning methods. The main goal is to compare three different convolutional neural networks (CNNs) models and determine the one which provides the best accuracy, knowing that only salient parts of the skin lesions images have been used for training.
引用
收藏
页码:816 / 824
页数:9
相关论文
共 7 条
[1]  
Codella NCF, 2018, I S BIOMED IMAGING, P168, DOI 10.1109/ISBI.2018.8363547
[2]  
Dat T., 2019, ISIC 2019
[3]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[4]   ImageNet Classification with Deep Convolutional Neural Networks [J].
Krizhevsky, Alex ;
Sutskever, Ilya ;
Hinton, Geoffrey E. .
COMMUNICATIONS OF THE ACM, 2017, 60 (06) :84-90
[5]  
Szegedy C, 2015, PROC CVPR IEEE, P1, DOI 10.1109/CVPR.2015.7298594
[6]   The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions [J].
Tschandl, Philipp ;
Rosendahl, Cliff ;
Kittler, Harald .
SCIENTIFIC DATA, 2018, 5
[7]   Benign and Malignant Skin Lesion Classification Comparison for Three Deep-Learning Architectures [J].
Yilmaz, Ercument ;
Trocan, Maria .
INTELLIGENT INFORMATION AND DATABASE SYSTEMS (ACIIDS 2020), PT I, 2020, 12033 :514-524