Dynamic ReLU

被引:100
作者
Chen, Yinpeng [1 ]
Dai, Xiyang [1 ]
Liu, Mengchen [1 ]
Chen, Dongdong [1 ]
Yuan, Lu [1 ]
Liu, Zicheng [1 ]
机构
[1] Microsoft Corp, Redmond, WA 98052 USA
来源
COMPUTER VISION - ECCV 2020, PT XIX | 2020年 / 12364卷
关键词
ReLU; Convolutional Neural Networks; Dynamic;
D O I
10.1007/978-3-030-58529-7_21
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Rectified linear units (ReLU) are commonly used in deep neural networks. So far ReLU and its generalizations (non-parametric or parametric) are static, performing identically for all input samples. In this paper, we propose Dynamic ReLU (DY-ReLU), a dynamic rectifier of which parameters are generated by a hyper function over all input elements. The key insight is that DY-ReLU encodes the global context into the hyper function, and adapts the piecewise linear activation function accordingly. Compared to its static counterpart, DY-ReLU has negligible extra computational cost, but significantly more representation capability, especially for light-weight neural networks. By simply using DY-ReLU for MobileNetV2, the top-1 accuracy on ImageNet classification is boosted from 72.0% to 76.2% with only 5% additional FLOPs.
引用
收藏
页码:351 / 367
页数:17
相关论文
共 46 条
[1]  
[Anonymous], nonlinearities improve neural network acoustic models
[2]  
Cai H., 2019, INT C LEARN REPR ICL
[3]  
Cai H, 2020, Arxiv, DOI arXiv:1908.09791
[4]  
Chen YP, 2020, Arxiv, DOI [arXiv:1912.03458, 10.48550/arXiv.1912.03458, DOI 10.48550/ARXIV.1912.03458]
[5]  
Clevert DA, 2016, Arxiv, DOI arXiv:1511.07289
[6]  
Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
[7]  
Dugas C, 2001, ADV NEUR IN, V13, P472
[8]  
Howard AG, 2017, Arxiv, DOI arXiv:1704.04861
[9]  
Ha D., 2017, HyperNetworks
[10]   Digital selection and analogue amplification coexist in a cortex-inspired silicon circuit [J].
Hahnloser, RHR ;
Sarpeshkar, R ;
Mahowald, MA ;
Douglas, RJ ;
Seung, HS .
NATURE, 2000, 405 (6789) :947-951