Clique-Width of Point Configurations

被引:0
作者
Cagirici, Onur [1 ]
Hlineny, Petr [1 ]
Pokryvka, Filip [1 ]
Sankaran, Abhisekh [2 ]
机构
[1] Masaryk Univ, Fac Informat, Brno, Czech Republic
[2] Univ Cambridge, Dept Comp Sci & Technol, Cambridge, England
来源
GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE, WG 2020 | 2020年 / 12301卷
关键词
Point configuration; Order type; Fixed-parameter tractability; Relational structure; Clique-width; GRAPHS; SETS;
D O I
10.1007/978-3-030-60440-0_5
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
While structural width parameters (of the input) belong to the standard toolbox of graph algorithms, it is not the usual case in computational geometry. As a case study we propose a natural extension of the structural graph parameter of clique-width to geometric point configurations represented by their order type. We study basic properties of this clique-width notion, and relate it to the monadic second-order logic of point configurations. As an application, we provide several linear FPT time algorithms for geometric point problems which are NP-hard in general, in the special case that the input point set is of bounded clique-width and the clique-width expression is also given.
引用
收藏
页码:54 / 66
页数:13
相关论文
共 27 条
[1]  
Adler H, 2008, Arxiv, DOI arXiv:0806.0103
[2]  
Aichholzer Oswin, 2017, International Journal of Computational Geometry & Applications, V27, P57, DOI 10.1142/S0218195917600044
[3]   Enumerating order types for small point sets with applications [J].
Aichholzer, O ;
Aurenhammer, F ;
Krasser, H .
ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2002, 19 (03) :265-281
[4]   Abstract order type extension and new results on the rectilinear crossing number [J].
Aichholzer, Oswin ;
Krasser, Hannes .
COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2007, 36 (01) :2-15
[5]   Minimal Representations of Order Types by Geometric Graphs [J].
Aichholzer, Oswin ;
Balko, Martin ;
Hoffmann, Michael ;
Kyncl, Jan ;
Mulzer, Wolfgang ;
Parada, Irene ;
Pilz, Alexander ;
Scheucher, Manfred ;
Valtr, Pavel ;
Vogtenhuber, Birgit ;
Welzl, Emo .
GRAPH DRAWING AND NETWORK VISUALIZATION, 2019, 11904 :101-113
[6]  
Aloupis Greg, 2014, P 25 ANN ACM SIAM S, P405, DOI DOI 10.1137/1.9781611973402.30
[7]   Recognizability, hypergraph operations, and logical types [J].
Blumensath, A. ;
Courcelle, B. .
INFORMATION AND COMPUTATION, 2006, 204 (06) :853-919
[8]  
Bonnet É, 2019, J COMPUT GEOM, V10, P21
[9]   Linear time solvable optimization problems on graphs of bounded clique-width [J].
Courcelle, B ;
Makowsky, JA ;
Rotics, U .
THEORY OF COMPUTING SYSTEMS, 2000, 33 (02) :125-150
[10]  
COURCELLE B, 1991, LECT NOTES COMPUT SC, V532, P253, DOI 10.1007/BFb0017394