A preconditioned fast finite volume method for two-dimensional conservative space-fractional diffusion equations on non-uniform meshes

被引:0
作者
Xu, Yuan [1 ,2 ]
Lei, Siu-Long [2 ]
Sun, Hai-Wei [2 ]
Fang, Zhi-Wei [3 ]
机构
[1] Cent South Univ Forestry & Technol, Coll Comp & Math, Changsha 410004, Hunan, Peoples R China
[2] Univ Macau, Dept Math, Macau, Peoples R China
[3] Foshan Univ, Sch Math, Foshan 528000, Peoples R China
基金
中国国家自然科学基金;
关键词
Fractional diffusion equation; Non-uniform mesh; Sum-of-exponentials approximation; Preconditioned GMRES method; TIME-STEPPING METHOD; DIFFERENCE APPROXIMATIONS; OBLIVIOUS CONVOLUTION; ITERATIVE METHODS; DISPERSION; CONVERGENCE; STABILITY; SCHEME;
D O I
10.1016/j.camwa.2025.07.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We develop a finite volume (FV) method to solve two-dimensional (2D) conservative space-fractional diffusion equations (SFDEs) on non-uniform meshes via a sum-of-exponentials (SOE) technique. The SOE technique is used to approximate the spatial kernel, resulting in a numerically stable scheme. To further improve efficiency, a preconditioned fast Krylov subspace iterative method is exploited to obtain the numerical solution. The matrix-vector multiplication can be performed in (9(M log2 M) operations for a matrix of size M. Numerical experiments confirm the effectiveness of the proposed algorithm in terms of the computational time and the number of iterations.
引用
收藏
页码:30 / 48
页数:19
相关论文
共 52 条
[1]   A KERNEL COMPRESSION SCHEME FOR FRACTIONAL DIFFERENTIAL EQUATIONS [J].
Baffet, Daniel ;
Hesthaven, Jan S. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2017, 55 (02) :496-520
[2]   Fractional dispersion, Levy motion, and the MADE tracer tests [J].
Benson, DA ;
Schumer, R ;
Meerschaert, MM ;
Wheatcraft, SW .
TRANSPORT IN POROUS MEDIA, 2001, 42 (1-2) :211-240
[3]  
Blackledge J., 2009, EG UK Theory and Practice of Computer Graphics, P233
[4]   Error analysis of a collocation method on graded meshes for a fractional Laplacian problem [J].
Chen, Minghua ;
Deng, Weihua ;
Min, Chao ;
Shi, Jiankang ;
Stynes, Martin .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2024, 50 (03)
[5]   An efficient positive-definite block-preconditioned finite volume solver for two-sided fractional diffusion equations on composite mesh [J].
Dai, Pingfei ;
Jia, Jinhong ;
Wang, Hong ;
Wu, Qingbiao ;
Zheng, Xiangcheng .
NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2021, 28 (05)
[6]   REGULARITY OF THE SOLUTION TO 1-D FRACTIONAL ORDER DIFFUSION EQUATIONS [J].
Ervin, V. J. ;
Heuer, N. ;
Roop, J. P. .
MATHEMATICS OF COMPUTATION, 2018, 87 (313) :2273-2294
[7]   A fast finite volume method for spatial fractional diffusion equations on nonuniform meshes [J].
Fang, Zhi-Wei ;
Zhang, Jia-Li ;
Sun, Hai-Wei .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2022, 108 :175-184
[8]   An approximate inverse preconditioner for spatial fractional diffusion equations with piecewise continuous coefficients [J].
Fang, Zhi-Wei ;
Sun, Hai-Wei ;
Wei, Hui-Qin .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2020, 97 (03) :523-545
[9]   Stability and convergence of a new finite volume method for a two-sided space-fractional diffusion equation [J].
Feng, L. B. ;
Zhuang, P. ;
Liu, F. ;
Turner, I. .
APPLIED MATHEMATICS AND COMPUTATION, 2015, 257 :52-65
[10]   Non-Fickian mass transport in fractured porous media [J].
Fomin, Sergei A. ;
Chugunov, Vladimir A. ;
Hashida, Toshiyuki .
ADVANCES IN WATER RESOURCES, 2011, 34 (02) :205-214