Comparative evaluation of behavioral epidemic models using COVID-19 data

被引:0
作者
Gozzi, Nicolo [1 ,2 ]
Perra, Nicola [2 ,3 ,4 ]
Vespignani, Alessandro [1 ,2 ]
机构
[1] Inst Sci Interchange Fdn, I-10126 Turin, Italy
[2] Northeastern Univ, Lab Modeling Biol & Sociotech Syst, Boston, MA 02115 USA
[3] Queen Mary Univ, Ctr Complex Syst, Sch Math Sci, London E1 4NS, England
[4] Alan Turing Inst, London NW1 2DB, England
关键词
COVID-19; behavioral epidemic models; behavioral changes; epidemiology; DYNAMICS; SPREAD; IMPACT; STRATEGIES;
D O I
10.1073/pnas.2421993122
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Characterizing the feedback linking human behavior and the transmission of infectious diseases (i.e., behavioral changes) remains a significant challenge in computational and mathematical epidemiology. Existing behavioral epidemic models often lack real-world data calibration and cross-model performance evaluation in both retrospective analysis and forecasting. In this study, we systematically compare the performance of three mechanistic behavioral epidemic models across nine geographies and two modeling tasks during the first wave of COVID-19, using various metrics. The first model, a Data-Driven Behavioral Feedback Model, incorporates behavioral changes by leveraging mobility data to capture variations in contact patterns. The second and third models are Analytical Behavioral Feedback Models, which simulate the feedback loop either through the explicit representation of different behavioral compartments within the population or by utilizing an effective nonlinear force of infection. Our results do not identify a single best model overall, as performance varies based on factors such as data availability, data quality, and the choice of performance metrics. While the Data-Driven Behavioral Feedback Model incorporates substantial real-time behavioral information, the Analytical Compartmental Behavioral Feedback Model often demonstrates superior or equivalent performance in both retrospective fitting and out-of-sample forecasts. Overall, our work offers guidance for future approaches and methodologies to better integrate behavioral changes into the modeling and projection of epidemic dynamics.
引用
收藏
页数:10
相关论文
共 96 条
[1]   Mathematical Models for COVID-19 Pandemic: A Comparative Analysis [J].
Adiga, Aniruddha ;
Dubhashi, Devdatt ;
Lewis, Bryan ;
Marathe, Madhav ;
Venkatramanan, Srinivasan ;
Vullikanti, Anil .
JOURNAL OF THE INDIAN INSTITUTE OF SCIENCE, 2020, 100 (04) :793-807
[2]   What human mobility data tell us about COVID-19 spread [J].
Alessandretti, Laura .
NATURE REVIEWS PHYSICS, 2022, 4 (01) :12-13
[3]   Modelling the impact of testing, contact tracing and household quarantine on second waves of COVID-19 [J].
Aleta, Alberto ;
Martin-Corral, David ;
Pastore y Piontti, Ana ;
Ajelli, Marco ;
Litvinova, Maria ;
Chinazzi, Matteo ;
Dean, Natalie E. ;
Halloran, M. Elizabeth ;
Longini, Ira M., Jr. ;
Merler, Stefano ;
Pentland, Alex ;
Vespignani, Alessandro ;
Moro, Esteban ;
Moreno, Yamir .
NATURE HUMAN BEHAVIOUR, 2020, 4 (09) :964-+
[4]  
Anderson D., 2004, Model selection and multi-model inference, V63, P10, DOI DOI 10.1007/B97636
[5]   Limitations of using mobile phone data to model COVID-19 transmission in the USA [J].
Badr, Hamada S. ;
Gardner, Lauren M. .
LANCET INFECTIOUS DISEASES, 2021, 21 (05) :E113-E113
[6]   Modelling the medium-term dynamics of SARS-CoV-2 transmission in England in the Omicron era [J].
Barnard, Rosanna C. ;
Davies, Nicholas G. ;
Jit, Mark ;
Edmunds, W. John .
NATURE COMMUNICATIONS, 2022, 13 (01)
[7]   A review and agenda for integrated disease models including social and behavioural factors [J].
Bedson, Jamie ;
Skrip, Laura A. ;
Pedi, Danielle ;
Abramowitz, Sharon ;
Carter, Simone ;
Jalloh, Mohamed F. ;
Funk, Sebastian ;
Gobat, Nina ;
Giles-Vernick, Tamara ;
Chowell, Gerardo ;
de Almeida, Joao Rangel ;
Elessawi, Rania ;
Scarpino, Samuel V. ;
Hammond, Ross A. ;
Briand, Sylvie ;
Epstein, Joshua M. ;
Hebert-Dufresne, Laurent ;
Althouse, Benjamin M. .
NATURE HUMAN BEHAVIOUR, 2021, 5 (07) :834-846
[8]   Evaluating epidemic forecasts in an interval format [J].
Bracher, Johannes ;
Ray, Evan L. ;
Gneiting, Tilmann ;
Reich, Nicholas G. .
PLOS COMPUTATIONAL BIOLOGY, 2021, 17 (02)
[9]   Model-informed COVID-19 vaccine prioritization strategies by age and serostatus [J].
Bubar, Kate M. ;
Reinholt, Kyle ;
Kissler, Stephen M. ;
Lipsitch, Marc ;
Cobey, Sarah ;
Grad, Yonatan H. ;
Larremore, Daniel B. .
SCIENCE, 2021, 371 (6532) :916-+
[10]   An SIR-type epidemiological model that integrates social distancing as a dynamic law based on point prevalence and socio-behavioral factors [J].
Cabrera, Maritza ;
Cordova-Lepe, Fernando ;
Pablo Gutierrez-Jara, Juan ;
Vogt-Geisse, Katia .
SCIENTIFIC REPORTS, 2021, 11 (01)