Robust Output Feedback MPC for Constrained Linear Systems Based on Zonotopic Kalman Filter

被引:0
作者
Zhang, Jingyu [2 ]
Tang, Wentao [1 ,2 ]
Wu, Yuhu [2 ]
Sun, Xi-Ming [2 ]
机构
[1] Dalian Univ Technol, Key Lab Intelligent Control & Optimizat Ind Equipm, Minist Educ, Dalian 116024, Peoples R China
[2] Dalian Univ Technol, Sch Control Sci & Engn, Dalian 116024, Peoples R China
来源
IEEE CONTROL SYSTEMS LETTERS | 2025年 / 9卷
基金
中国国家自然科学基金;
关键词
Output feedback; Kalman filters; Observers; Control systems; Robustness; Riccati equations; Noise; Linear systems; Generators; Estimation error; Robust output feedback MPC; constrained linear systems; zonotopic Kalman filter; MODEL-PREDICTIVE CONTROL; GUARANTEED STATE ESTIMATION;
D O I
10.1109/LCSYS.2025.3581490
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This letter presents a robust output feedback model predictive control (MPC) method integrating a zonotopic Kalman filter (ZKF) for constrained linear systems under disturbances. Firstly, A ZKF is used to increase estimation accuracy and its optimal gain is obtained via solving a discrete-time algebraic Riccati equation. Secondly, a robust output MPC strategy is proposed, where an efficient constraint-handling strategy utilizing zonotope properties to replace linear programming (LP) with matrix operations, significantly reducing computational load. The approach ensures recursive feasibility and exponential stability while maintaining computational tractability. Finally, two simulation examples demonstrate the effectiveness and superiority of the proposed method.
引用
收藏
页码:1490 / 1495
页数:6
相关论文
共 25 条
[1]   Guaranteed state estimation by zonotopes [J].
Alamo, T ;
Bravo, JM ;
Camacho, EF .
AUTOMATICA, 2005, 41 (06) :1035-1043
[2]  
Althoff M., 2015, EPiC Series in Computing, P120
[3]  
[Anonymous], 2008, IFAC Proc
[4]  
Bittanti S., 1991, The Riccati Equation, P127, DOI DOI 10.1007/978-3-642-58223-3_6
[5]   Set invariance in control [J].
Blanchini, F .
AUTOMATICA, 1999, 35 (11) :1747-1767
[6]   Robust MPC of constrained discrete-time nonlinear systems based on approximated reachable sets [J].
Bravo, J. M. ;
Alamo, T. ;
Camacho, E. F. .
AUTOMATICA, 2006, 42 (10) :1745-1751
[7]   Zonotopes and Kalman observers: Gain optimality under distinct uncertainty paradigms and robust convergence [J].
Combastel, Christophe .
AUTOMATICA, 2015, 55 :265-273
[8]   Model Predictive Control in Aerospace Systems: Current State and Opportunities [J].
Eren, Utku ;
Prach, Anna ;
Kocer, Basaran Bahadir ;
Rakovic, Sasa V. ;
Kayacan, Erdal ;
Acikmese, Behcet .
JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2017, 40 (07) :1541-1566
[9]  
Herceg M, 2013, 2013 EUROPEAN CONTROL CONFERENCE (ECC), P502
[10]   Theory and computation of disturbance invariant sets for discrete-time linear systems [J].
Kolmanovsky, I ;
Gilbert, EG .
MATHEMATICAL PROBLEMS IN ENGINEERING, 1998, 4 (04) :317-367