BIRNAT: Bidirectional Recurrent Neural Networks with Adversarial Training for Video Snapshot Compressive Imaging

被引:60
作者
Cheng, Ziheng [1 ]
Lu, Ruiying [1 ]
Wang, Zhengjue [1 ]
Zhang, Hao [1 ]
Chen, Bo [1 ]
Meng, Ziyi [2 ,3 ]
Yuan, Xin [4 ]
机构
[1] Xidian Univ, Natl Lab Radar Signal Proc, Xian, Peoples R China
[2] Beijing Univ Posts & Telecommun, Beijing, Peoples R China
[3] New Jersey Inst Technol, Newark, NJ USA
[4] Nokia Bell Labs, Murray Hill, NJ USA
来源
COMPUTER VISION - ECCV 2020, PT XXIV | 2020年 / 12369卷
关键词
Snapshot compressive imaging; Compressive sensing; Deep learning; Convolutional neural networks; Recurrent Neural Network;
D O I
10.1007/978-3-030-58586-0_16
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We consider the problem of video snapshot compressive imaging (SCI), where multiple high-speed frames are coded by different masks and then summed to a single measurement. This measurement and the modulation masks are fed into our Recurrent Neural Network (RNN) to reconstruct the desired high-speed frames. Our end-to-end sampling and reconstruction system is dubbed BIdirectional Recurrent Neural networks with Adversarial Training (BIRNAT). To our best knowledge, this is the first time that recurrent networks are employed to SCI problem. Our proposed BIRNAT outperforms other deep learning based algorithms and the state-of-the-art optimization based algorithm, DeSCI, through exploiting the underlying correlation of sequential video frames. BIRNAT employs a deep convolutional neural network with Resblock and feature map self-attention to reconstruct the first frame, based on which bidirectional RNN is utilized to reconstruct the following frames in a sequential manner. To improve the quality of the reconstructed video, BIRNAT is further equipped with the adversarial training besides the mean square error loss. Extensive results on both simulation and real data (from two SCI cameras) demonstrate the superior performance of our BIRNAT system. The codes are available at https://github.com/BoChenGroup/BIRNAT.
引用
收藏
页码:258 / 275
页数:18
相关论文
共 58 条
[1]   On the use of deep learning for computational imaging [J].
Barbastathis, George ;
Ozcan, Aydogan ;
Situ, Guohai .
OPTICA, 2019, 6 (08) :921-943
[2]   A new TwIST: Two-step iterative shrinkage/thresholding algorithms for image restoration [J].
Bioucas-Dias, Jose M. ;
Figueiredo, Mario A. T. .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2007, 16 (12) :2992-3004
[3]   Distributed optimization and statistical learning via the alternating direction method of multipliers [J].
Boyd S. ;
Parikh N. ;
Chu E. ;
Peleato B. ;
Eckstein J. .
Foundations and Trends in Machine Learning, 2010, 3 (01) :1-122
[4]   A non-local algorithm for image denoising [J].
Buades, A ;
Coll, B ;
Morel, JM .
2005 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 2, PROCEEDINGS, 2005, :60-65
[5]   Robust uncertainty principles:: Exact signal reconstruction from highly incomplete frequency information [J].
Candès, EJ ;
Romberg, J ;
Tao, T .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (02) :489-509
[6]   Compressed sensing [J].
Donoho, DL .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (04) :1289-1306
[7]  
Goodfellow I, 2017, Arxiv, DOI arXiv:1701.00160
[8]  
Goodfellow IJ, 2014, ADV NEUR IN, V27, P2672
[9]  
Graves A, 2013, INT CONF ACOUST SPEE, P6645, DOI 10.1109/ICASSP.2013.6638947
[10]   Weighted Nuclear Norm Minimization with Application to Image Denoising [J].
Gu, Shuhang ;
Zhang, Lei ;
Zuo, Wangmeng ;
Feng, Xiangchu .
2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2014, :2862-2869