Stochastic Frequency Masking to Improve Super-Resolution and Denoising Networks

被引:22
作者
El Helou, Majed [1 ]
Zhou, Ruofan [1 ]
Susstrunk, Sabine [1 ]
机构
[1] Ecole Polytech Fed Lausanne, Sch Comp & Commun Sci, Lausanne, Switzerland
来源
COMPUTER VISION - ECCV 2020, PT XVI | 2020年 / 12361卷
关键词
Image restoration; Super-resolution; Denoising; Kernel overfitting; IMAGE SUPERRESOLUTION; STATISTICS; DIFFUSION;
D O I
10.1007/978-3-030-58517-4_44
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Super-resolution and denoising are ill-posed yet fundamental image restoration tasks. In blind settings, the degradation kernel or the noise level are unknown. This makes restoration even more challenging, notably for learning-based methods, as they tend to overfit to the degradation seen during training. We present an analysis, in the frequency domain, of degradation-kernel overfitting in super-resolution and introduce a conditional learning perspective that extends to both super-resolution and denoising. Building on our formulation, we propose a stochastic frequency masking of images used in training to regularize the networks and address the overfitting problem. Our technique improves state-of-the-art methods on blind super-resolution with different synthetic kernels, real super-resolution, blind Gaussian denoising, and real-image denoising.
引用
收藏
页码:749 / 766
页数:18
相关论文
共 67 条
[1]   Acceleration of electrons in the plasma wakefield of a proton bunch [J].
Adli, E. ;
Ahuja, A. ;
Apsimon, O. ;
Apsimon, R. ;
Bachmann, A. -M. ;
Barrientos, D. ;
Batsch, F. ;
Bauche, J. ;
Olsen, V. K. Berglyd ;
Bernardini, M. ;
Bohl, T. ;
Bracco, C. ;
Braunmueller, F. ;
Burt, G. ;
Buttenschoen, B. ;
Caldwell, A. ;
Cascella, M. ;
Chappell, J. ;
Chevallay, E. ;
Chung, M. ;
Cooke, D. ;
Damerau, H. ;
Deacon, L. ;
Deubner, L. H. ;
Dexter, A. ;
Doebert, S. ;
Farmer, J. ;
Fedosseev, V. N. ;
Fiorito, R. ;
Fonseca, R. A. ;
Friebel, F. ;
Garolfi, L. ;
Gessner, S. ;
Gorgisyan, I. ;
Gorn, A. A. ;
Granados, E. ;
Grulke, O. ;
Gschwendtner, E. ;
Hansen, J. ;
Helm, A. ;
Henderson, J. R. ;
Huether, M. ;
Ibison, M. ;
Jensen, L. ;
Jolly, S. ;
Keeble, F. ;
Kim, S. -Y. ;
Kraus, F. ;
Li, Y. ;
Liu, S. .
NATURE, 2018, 561 (7723) :363-+
[2]   NTIRE 2017 Challenge on Single Image Super-Resolution: Dataset and Study [J].
Agustsson, Eirikur ;
Timofte, Radu .
2017 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2017, :1122-1131
[3]   K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation [J].
Aharon, Michal ;
Elad, Michael ;
Bruckstein, Alfred .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2006, 54 (11) :4311-4322
[4]   DISCRETE COSINE TRANSFORM [J].
AHMED, N ;
NATARAJAN, T ;
RAO, KR .
IEEE TRANSACTIONS ON COMPUTERS, 1974, C 23 (01) :90-93
[5]   Real Image Denoising with Feature Attention [J].
Anwar, Saeed ;
Barnes, Nick .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :3155-3164
[6]   Image Deblurring with a Class-Specific Prior [J].
Anwar, Saeed ;
Huynh, Cong Phuoc ;
Porikli, Fatih .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2019, 41 (09) :2112-2130
[7]  
Batson J, 2019, PR MACH LEARN RES, V97
[8]   Astronomical image denoising using dictionary learning [J].
Beckouche, S. ;
Starck, J. L. ;
Fadili, J. .
ASTRONOMY & ASTROPHYSICS, 2013, 556
[9]   Building robust wavelet estimators for multicomponent images using Stein's principle [J].
Benazza-Benyahia, A ;
Pesquet, JC .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2005, 14 (11) :1814-1830
[10]   COLOR AND SPATIAL STRUCTURE IN NATURAL SCENES [J].
BURTON, GJ ;
MOORHEAD, IR .
APPLIED OPTICS, 1987, 26 (01) :157-170