Uncertainty relations for approximation and estimation

被引:0
作者
Lee J. [1 ]
Tsutsui I. [1 ,2 ]
机构
[1] Department of Physics, University of Tokyo, 7-3-1 Hongo, Tokyo, 113-0033, Bunkyo-ku
[2] Theory Center, Institute of Particle and Nuclear Studies, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Ibaraki, 305-0801, Tsukuba
来源
Physics Letters, Section A: General, Atomic and Solid State Physics | 2018年 / 380卷 / 24期
基金
日本学术振兴会;
关键词
Estimation theory; Uncertainty relation; Weak value;
D O I
10.1016/j.physleta.2016.04.009
中图分类号
学科分类号
摘要
We present a versatile inequality of uncertainty relations which are useful when one approximates an observable and/or estimates a physical parameter based on the measurement of another observable. It is shown that the optimal choice for proxy functions used for the approximation is given by Aharonov's weak value, which also determines the classical Fisher information in parameter estimation, turning our inequality into the genuine Cramér–Rao inequality. Since the standard form of the uncertainty relation arises as a special case of our inequality, and since the parameter estimation is available as well, our inequality can treat both the position–momentum and the time–energy relations in one framework albeit handled differently. © 2016 Elsevier B.V.
引用
收藏
页码:2045 / 2048
页数:3
相关论文
共 19 条
[1]  
Heisenberg W., Z. Phys., 43, (1927)
[2]  
Kennard E.H., Z. Phys., 44, (1927)
[3]  
Robertson H.P., Phys. Rev., 34, (1929)
[4]  
Arthurs E., Goodman M.S., Phys. Rev. Lett., 60, (1988)
[5]  
Ozawa M., Phys. Rev. A, 67, (2003)
[6]  
Ozawa M., Phys. Lett. A, 320, (2004)
[7]  
Watanabe Y., Sagawa T., Ueda M., Phys. Rev. Lett., 104, (2010)
[8]  
Watanabe Y., Sagawa T., Ueda M., Phys. Rev. A, 84, (2011)
[9]  
Mandelshtam L.I., Tamm I.E., J. Phys. (USSR), Izv. Akad. Nauk SSSR, Ser. Fiz., 9, (1945)
[10]  
Helstrom C.W., Quantum Detection and Estimation Theory, (1976)