Prior-Based Domain Adaptive Object Detection for Hazy and Rainy Conditions

被引:136
作者
Sindagi, Vishwanath A. [1 ]
Oza, Poojan [1 ]
Yasarla, Rajeev [1 ]
Patel, Vishal M. [1 ]
机构
[1] Johns Hopkins Univ, Dept Elect & Comp Engn, 3400 Charles St, Baltimore, MD 21218 USA
来源
COMPUTER VISION - ECCV 2020, PT XIV | 2020年 / 12359卷
关键词
Detection; Unsupervised domain adaptation; Adverse weather; Rain; Haze;
D O I
10.1007/978-3-030-58568-6_45
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Adverse weather conditions such as haze and rain corrupt the quality of captured images, which cause detection networks trained on clean images to perform poorly on these corrupted images. To address this issue, we propose an unsupervised prior-based domain adversarial object detection framework for adapting the detectors to hazy and rainy conditions. In particular, we use weather-specific prior knowledge obtained using the principles of image formation to define a novel prior-adversarial loss. The prior-adversarial loss, which we use to supervise the adaptation process, aims to reduce the weather-specific information in the features, thereby mitigating the effects of weather on the detection performance. Additionally, we introduce a set of residual feature recovery blocks in the object detection pipeline to de-distort the feature space, resulting in further improvements. Evaluations performed on various datasets (Foggy-Cityscapes, Rainy-Cityscapes, RTTS and UFDD) for rainy and hazy conditions demonstrates the effectiveness of the proposed approach.
引用
收藏
页码:763 / 780
页数:18
相关论文
共 64 条
[1]  
Sindagi VA, 2020, Arxiv, DOI arXiv:2007.03195
[2]  
Abavisani M., 2016, 27 BRIT MACH VIS C B
[3]  
Abavisani M, 2018, 2018 IEEE 4TH INTERNATIONAL CONFERENCE ON IDENTITY, SECURITY, AND BEHAVIOR ANALYSIS (ISBA)
[4]   NTIRE 2018 Challenge on Image Dehazing: Methods and Results [J].
Ancuti, Cosmin ;
Ancuti, Codruta O. ;
Timofte, Radu ;
Van Gool, Luc ;
Zhang, Lei ;
Yang, Ming-Hsuan ;
Patel, Vishal M. ;
Zhang, He ;
Sindagi, Vishwanath A. ;
Zhao, Ruhao ;
Ma, Xiaoping ;
Qin, Yong ;
Jia, Limin ;
Friedel, Klaus ;
Ki, Sehwan ;
Sim, Hyeonjun ;
Choi, Jae-Seok ;
Kim, Soo Ye ;
Seo, Soomin ;
Kim, Saehun ;
Kim, Munchurl ;
Mondal, Ranjan ;
Santra, Sanchayan ;
Chanda, Bhabatosh ;
Liu, Jinlin ;
Mei, Kangfu ;
Li, Juncheng ;
Luyao ;
Fang, Faming ;
Jiang, Aiwen ;
Qu, Xiaochao ;
Liu, Ting ;
Wang, Pengfei ;
Sun, Biao ;
Deng, Jiangfan ;
Zhao, Yuhang ;
Hong, Ming ;
Huang, Jingying ;
Chen, Yizhi ;
Chen, Erin ;
Yu, Xiaoli ;
Wu, Tingting ;
Genc, Anil ;
Engin, Deniz ;
Ekenel, Hazim Kemal ;
Liu, Wenzhe ;
Tong, Tong ;
Li, Gen ;
Gao, Qinquan ;
Li, Zhan .
PROCEEDINGS 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2018, :1004-1014
[5]   Exploring Object Relation in Mean Teacher for Cross-Domain Detection [J].
Cai, Qi ;
Pan, Yingwei ;
Ngo, Chong-Wah ;
Tian, Xinmei ;
Duan, Lingyu ;
Yao, Ting .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :11449-11458
[6]   Domain Adaptive Faster R-CNN for Object Detection in the Wild [J].
Chen, Yuhua ;
Li, Wen ;
Sakaridis, Christos ;
Dai, Dengxin ;
Van Gool, Luc .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :3339-3348
[7]   The Cityscapes Dataset for Semantic Urban Scene Understanding [J].
Cordts, Marius ;
Omran, Mohamed ;
Ramos, Sebastian ;
Rehfeld, Timo ;
Enzweiler, Markus ;
Benenson, Rodrigo ;
Franke, Uwe ;
Roth, Stefan ;
Schiele, Bernt .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :3213-3223
[8]   Histograms of oriented gradients for human detection [J].
Dalal, N ;
Triggs, B .
2005 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 1, PROCEEDINGS, 2005, :886-893
[9]  
Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
[10]   The Pascal Visual Object Classes (VOC) Challenge [J].
Everingham, Mark ;
Van Gool, Luc ;
Williams, Christopher K. I. ;
Winn, John ;
Zisserman, Andrew .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2010, 88 (02) :303-338