Thermodynamics, local structure, and transport of protons in triple-conducing oxide, BaCo0.4Fe0.4Zr0.1Y0.1O3-δ (BCFZY4411)

被引:1
作者
Shin, Yewon [1 ]
Sanders, Michael D. [1 ]
Truong, Erica [2 ]
Majumder, Supriyo [3 ]
Cladek, Bernadette [4 ]
Walker, Michael [1 ]
Ogbolu, Bright [2 ]
Zhang, Rongfu [2 ]
Evmenenko, Guennadi A. [3 ]
Hu, Yan-Yan [2 ,6 ]
Bedzyk, Michael J. [3 ,7 ]
Page, Katharine [4 ,5 ]
Haile, Sossina M. [3 ]
O'Hayre, Ryan [1 ]
机构
[1] Colorado Sch Mines, Dept Met & Mat Engn, Golden, CO 80401 USA
[2] Florida State Univ, Dept Chem, Tallahassee, FL 32310 USA
[3] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA
[4] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA
[5] Oak Ridge Natl Lab, Neutron Scattering Div, Oak Ridge, TN 37831 USA
[6] Natl High Magnet Field Lab, Ctr Interdisciplinary Magnet Resonance, Tallahassee, FL 32310 USA
[7] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA
基金
加拿大创新基金会; 加拿大自然科学与工程研究理事会; 加拿大健康研究院; 美国国家科学基金会;
关键词
Triple-conducting oxide (TCO); Positrode; BCFZY4411; Kinetics; Thermodynamics; Local structure and dynamics; OXYGEN TRACER DIFFUSION; SURFACE EXCHANGE; CHEMICAL DIFFUSION; CONDUCTING OXIDES; FUEL-CELLS; PEROVSKITE; CATHODE; H-1-NMR; LAYER;
D O I
10.1016/j.ssi.2025.116962
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Triple-conducting oxides (TCOs) are an emerging class of mixed ionic and electronically conducting materials that show great promise for oxygen reduction/evolution (ORR/OER) electrocatalysis-primarily in high-temperature ceramic electrochemical cells- but also in aqueous alkaline environments. Their high activity is attributed, at least in part, to their ability to incorporate and transport three mobile charge carriers: protons, oxygen vacancies, and electron-holes. Despite their promise, fundamental studies of TCOs are challenging, as transport dynamics from three charge carriers cannot be fully disentangled via traditional electrical measurement techniques. Characterizing proton dynamics in TCOs is particularly difficult as protons are generally the minority carrier, and their conduction response is typically obscured by the oxygen vacancies and electron holes. Here, we demonstrate successful isolation of the proton behavior in an archetypal TCO, BaCo0.4Fe0.4Zr0.1Y0.1O3-delta (BCFZY4411), using a combination of non-electrical techniques. We determine proton uptake and oxygen non-stoichiometry (delta) using thermogravimetric analysis (TGA). X-ray absorption near edge structure (XANES) and neutron diffraction (ND) are used to validate the oxidation state of Co and the delta values obtained through TGA. We apply H-1 solid-state magic-angle-spinning (MAS) nuclear magnetic resonance (NMR) to provide insights into local structure, dynamics, and proton kinetics. Finally, the proton transport properties are further quantified using tracer isotope exchange with time-of-flight secondary ion mass spectrometry (ToF-SIMS). Despite the very low proton concentrations in BCFZY4411 (<0.2 % under most conditions), our analysis suggests that the oxygen reduction and evolution reactions are nevertheless limited by the oxygen ion kinetics (e.g., oxygen surface exchange) rather than the proton kinetics at the reduced operating temperatures (<500 degrees C) that are targeted for electrochemical cell applications. These findings provide a comprehensive understanding of proton behavior in BCFZY4411 and pave the way for advancing the fundamental study of TCOs.
引用
收藏
页数:13
相关论文
共 83 条
[51]   Water-mediated exsolution of nanoparticles in alkali metal-doped perovskite structured triple-conducting oxygen electrocatalysts for reversible cells [J].
Park, Kwangho ;
Saqib, Muhammad ;
Lee, Hyungwoo ;
Shin, Donghwi ;
Jo, Minkyeong ;
Park, Kwang Min ;
Hamayun, Muhammad ;
Kim, Seo Hyun ;
Kim, Sungkyu ;
Lee, Kug-Seung ;
O'Hayre, Ryan ;
Choi, Minseok ;
Song, Sun-Ju ;
Park, Jun-Young .
ENERGY & ENVIRONMENTAL SCIENCE, 2024, 17 (03) :1175-1188
[52]   Paramagnetic NMR in solution and the solid state [J].
Pell, Andrew J. ;
Pintacuda, Guido ;
Grey, Clare P. .
PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY, 2019, 111 :1-271
[53]   Correlating Proton Diffusion in Perovskite Triple-Conducting Oxides with Local and Defect Structure [J].
Plekhanov, Maksim S. ;
Thoma, Sabrina L. J. ;
Zobel, Mirijam ;
Cuello, Gabriel J. ;
Fischer, Henry E. ;
Raskovalov, Anton A. ;
Kuzmin, Anton, V .
CHEMISTRY OF MATERIALS, 2022, 34 (10) :4785-4794
[54]   Reaction tuned formation of hierarchical BaCo0.4Fe0.4Zr0.1Y0.1O3-δ cathode [J].
Qi, Huiying ;
Zhao, Zhe ;
Tu, Baofeng ;
Cheng, Mojie .
JOURNAL OF POWER SOURCES, 2020, 455
[55]   ATHENA, ARTEMIS, HEPHAESTUS:: data analysis for X-ray absorption spectroscopy using IFEFFIT [J].
Ravel, B ;
Newville, M .
JOURNAL OF SYNCHROTRON RADIATION, 2005, 12 :537-541
[56]   Phase distortion-free paramagnetic NMR spectra [J].
Ravera, Enrico .
JOURNAL OF MAGNETIC RESONANCE OPEN, 2021, 8-9
[57]   Investigation of the Proton Transport Mechanism in Sc-Doped CaZrO3 Using Ab-Initio Molecular Dynamics Simulations [J].
Ray, Sanjib ;
Kumar, P. Padma .
JOURNAL OF PHYSICAL CHEMISTRY C, 2025, 129 (20) :9432-9440
[58]   Fluorination inductive effect enables rapid bulk proton diffusion in BaCo0.4Fe0.4Zr0.1Y0.1O3-δ perovskite oxide for high-activity protonic ceramic fuel cell cathode [J].
Ren, Rongzheng ;
Yu, Xiaodan ;
Wang, Zhenhua ;
Xu, Chunming ;
Song, Tinglu ;
Sun, Wang ;
Qiao, Jinshuo ;
Sun, Kening .
APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY, 2022, 317
[59]   Tailoring the Oxygen Vacancy to Achieve Fast Intrinsic Proton Transport in a Perovskite Cathode for Protonic Ceramic Fuel Cells [J].
Ren, Rongzheng ;
Wang, Zhenhua ;
Meng, Xingguang ;
Wang, Xinhua ;
Xu, Chunming ;
Qiao, Jinshuo ;
Sun, Wang ;
Sun, Kening .
ACS APPLIED ENERGY MATERIALS, 2020, 3 (05) :4914-4922
[60]   Tuning the defects of the triple conducting oxide BaCo0.4Fe0.4Zr0.1Y0.1O3-δ perovskite toward enhanced cathode activity of protonic ceramic fuel cells [J].
Ren, Rongzheng ;
Wang, Zhenhua ;
Xu, Chunming ;
Sun, Wang ;
Qiao, Jinshuo ;
Rooney, David W. ;
Sun, Kening .
JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (31) :18365-18372