Optimizing Data Quality and Decision-Making in IoT with AI-Driven Data Reduction in DICOM

被引:0
作者
Pioli, Laercio [1 ]
de Macedo, Douglas D. J. [1 ]
Costa, Daniel G. [2 ]
Dantas, Mario A. R. [3 ]
机构
[1] Univ Fed Santa Catarina, Florianopolis, SC, Brazil
[2] Univ Porto, Fac Engn, SYSTEC ARISE, Porto, Portugal
[3] Univ Fed Juiz de Fora, Juiz De Fora, MG, Brazil
来源
2024 IEEE/ACM 17TH INTERNATIONAL CONFERENCE ON UTILITY AND CLOUD COMPUTING, UCC | 2024年
关键词
Artificial Intelligence; Data Management; Data Reduction; Machine Learning; IoT; DICOM;
D O I
10.1109/UCC63386.2024.00016
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The extensive adoption of Internet of Things (IoT) applications increases the need to strategically deploy sensor devices, generating vast volumes of data. This extensive data flow can overwhelm network capacities, highlighting the need for efficient data reduction techniques. This paper introduces a multi-model AI-based data reduction solution to optimize data quality and decision-making processes in IoT environments. By predicting critical analytical metrics such as reduction and distortion ratios, our approach allows for the dynamic selection of a suitable DR algorithm, thereby enhancing both storage efficiency and data utility. Our experimental validation, conducted using Digital Imaging and Communications in Medicine (DICOM) images, demonstrates the need of our solution in processing high-density data, thereby avoiding exhaustive processing and ensuring optimal data management.
引用
收藏
页码:47 / 52
页数:6
相关论文
共 24 条
[1]  
Bourai N. E. H., Neural Computing and Applications, P1
[2]  
Boutell T., 1997, Request Comments, V2083, P1
[3]   Taxonomy and analysis of security protocols for Internet of Things [J].
Das, Ashok Kumar ;
Zeadally, Sherali ;
He, Debiao .
FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2018, 89 :110-125
[4]  
Falk E., 2020, Innovative Technologies for Market Leadership: Investing in the Future, P271
[5]   DeepFixCX: Explainable privacy-preserving image compression for medical image analysis [J].
Gaudio, Alex ;
Smailagic, Asim ;
Faloutsos, Christos ;
Mohan, Shreshta ;
Johnson, Elvin ;
Liu, Yuhao ;
Costa, Pedro ;
Campilho, Aurelio .
WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2023, 13 (04)
[6]   RUN-LENGTH ENCODINGS [J].
GOLOMB, SW .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1966, 12 (03) :399-+
[7]   A METHOD FOR THE CONSTRUCTION OF MINIMUM-REDUNDANCY CODES [J].
HUFFMAN, DA .
PROCEEDINGS OF THE INSTITUTE OF RADIO ENGINEERS, 1952, 40 (09) :1098-1101
[8]  
ITU O., 2014, ISO/IEC 13818-2
[9]  
Kotera J., 2023, CVWW
[10]   Medical Image Compression Based on Variational Autoencoder [J].
Liu, Xuan ;
Zhang, Lu ;
Guo, Zihao ;
Han, Tailin ;
Ju, Mingchi ;
Xu, Bo ;
Liu, Hong .
MATHEMATICAL PROBLEMS IN ENGINEERING, 2022, 2022