Maximal Averages over Singular Hypersurfaces

被引:0
作者
Usmanov, Salim [1 ,2 ]
Ekincioglu, Ismail [3 ]
机构
[1] Sharof Rashidov Samarkand State Univ, Samarkand 140104, Uzbekistan
[2] Kimyo Int Univ Tashkent, Tashkent, Uzbekistan
[3] Istanbul Medeniyet Univ, TR-34700 Istanbul, Turkiye
关键词
Maximal operator; regular point; boundedness; fractional power series; singular hypersurface; principal curvatures; BOUNDEDNESS; R-3;
D O I
10.1134/S1995080225605235
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider maximal operators associated with a class of parameterized singular hypersurfaces in Rn+1, showing boundedness of these operators in Lebesgue L-p space for p >2. Also, we prove that at least one of the principal curvatures is non-zero at each regular point of these hypersurfaces.
引用
收藏
页码:1437 / 1443
页数:7
相关论文
共 21 条
[1]   AVERAGES IN THE PLANE OVER CONVEX CURVES AND MAXIMAL OPERATORS [J].
BOURGAIN, J .
JOURNAL D ANALYSE MATHEMATIQUE, 1986, 47 :69-85
[2]  
BRUNO AD, 2000, POWER GEOMETRY ALGEB
[3]   ESTIMATES FOR MAXIMAL FUNCTIONS ASSOCIATED TO HYPERSURFACES IN R3 WITH HEIGHT h < 2: PART I [J].
Buschenhenke, Stefan ;
Dendrinos, Spyridon ;
Ikromov, Isroil A. ;
Mueller, Detlef .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 372 (02) :1363-1406
[4]   A MULTI-DIMENSIONAL RESOLUTION OF SINGULARITIES WITH APPLICATIONS TO ANALYSIS [J].
Collins, Tristan C. ;
Greenleaf, Allan ;
Pramanik, Malabika .
AMERICAN JOURNAL OF MATHEMATICS, 2013, 135 (05) :1179-1252
[5]  
Dubrovin B. A., 1984, Contemporary Geometry: Methods and Applications
[6]   PRINCIPAL CURVATURE AND HARMONIC-ANALYSIS [J].
GREENLEAF, A .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1981, 30 (04) :519-537
[7]  
Ikromov I. A., 2022, J. Math. Sci, V264, P715
[8]   Damped oscillatory integrals and boundedness of maximal operators associated to mixed homogeneous hypersurfaces [J].
Ikromov, IA ;
Kempe, M ;
Müller, D .
DUKE MATHEMATICAL JOURNAL, 2005, 126 (03) :471-490
[9]   Estimates for maximal functions associated with hypersurfaces in R3 and related problems of harmonic analysis [J].
Ikromov, Isroil A. ;
Kempe, Michael ;
Mueller, Detlef .
ACTA MATHEMATICA, 2010, 204 (02) :151-271
[10]   Uniform estimates for oscillatory integrals with homogeneous polynomial phases of degree 4 [J].
Ruzhansky, Michael ;
Safarov, Akbar R. ;
Khasanov, Gafurjan A. .
ANALYSIS AND MATHEMATICAL PHYSICS, 2022, 12 (06)