Progress in piezo-phototronic effect enhanced photodetectors

被引:51
作者
Han X. [1 ]
Chen M. [1 ]
Pan C. [1 ]
Wang Z.L. [1 ,2 ]
机构
[1] Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, National Center for Nanoscience and Technology (NCNST), Beijing
[2] School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, 30332-0245, GA
来源
Journal of Materials Chemistry C | 2016年 / 4卷 / 48期
基金
中国国家自然科学基金;
关键词
III-V semiconductors - Magnetic semiconductors - Wide band gap semiconductors - Photons - Semiconducting zinc compounds - Photodetectors - Semiconducting selenium compounds - Cadmium compounds - II-VI semiconductors - Zinc oxide - Band diagram - Semiconducting indium compounds - Zinc sulfide;
D O I
10.1039/c6tc04029b
中图分类号
学科分类号
摘要
Wurtzite structured materials such as InN, CaN, ZnO, and CdSe simultaneously possess piezoelectric, semiconducting, and photoexcitation properties. The piezo-phototronic effect utilizes the piezo-polarization charges induced in the vicinity of the interface/junction to regulate the energy band diagrams and modulate charge carriers in the optoelectronic processes, such as transport, generation, recombination, and separation. This article reviews recent progress in piezo-phototronic effect enhanced photodetectors, starting from the fundamental physics, following the development from a single nanowire device to a large-scale photodetector array for illumination imaging. The piezo-phototronic effect provides a promising approach to improve the performance of the wurtzite structured material-based photodetectors. It may have potential applications in optical communication, optoelectronic devices, and multifunctional computing systems. © The Royal Society of Chemistry.
引用
收藏
页码:11341 / 11354
页数:13
相关论文
共 138 条
[1]  
Kou L., Huang T.Q., Zheng B.N., Han Y., Zhao X.L., Gopalsamy K., Sun H.Y., Gao C., Nat. Commun., 5, (2014)
[2]  
Son D., Lee J., Qiao S., Ghaffari R., Kim J., Lee J.E., Song C., Kim S.J., Lee D.J., Jun S.W., Yang S., Park M., Shin J., Do K., Lee M., Kang K., Hwang C.S., Lu N.S., Hyeon T., Kim D.H., Nat. Nanotechnol., 9, pp. 397-404, (2014)
[3]  
Bae Y., Fukushima S., Harada A., Kataoka K., Angew. Chem., Int. Ed., 42, pp. 4640-4643, (2003)
[4]  
Akyildiz I.F., Su W., Sankarasubramaniam Y., Cayirci E., Comput. Netw., 38, pp. 393-422, (2002)
[5]  
Grattan K.T.V., Sun T., Sens. Actuators, A, 82, pp. 40-61, (2000)
[6]  
Dong C.H., He L., Xiao Y.F., Gaddam V.R., Ozdemir S.K., Han Z.F., Guo G.C., Yang L., Appl. Phys. Lett., 94, (2009)
[7]  
Wang C., Hwang D., Yu Z.B., Takei K., Park J., Chen T., Ma B.W., Javey A., Nat. Mater., 12, pp. 899-904, (2013)
[8]  
Pan C.F., Dong L., Zhu G., Niu S.M., Yu R.M., Yang Q., Liu Y., Wang Z.L., Nat. Photonics, 7, pp. 752-758, (2013)
[9]  
Wang X.D., Zhang H.L., Yu R.M., Dong L., Peng D.F., Zhang A.H., Zhang Y., Liu H., Pan C.F., Wang Z.L., Adv. Mater., 27, pp. 2324-2331, (2015)
[10]  
Wang X.D., Zhang H.L., Dong L., Han X., Du W.M., Zhai J.Y., Pan C.F., Wang Z.L., Adv. Mater., 28, pp. 2896-2903, (2016)