Data-driven synthetic microbes for sustainable future

被引:0
作者
Mariam, Iqra [1 ,2 ]
Rova, Ulrika [1 ,2 ]
Christakopoulos, Paul [1 ,2 ]
Matsakas, Leonidas [1 ,2 ]
Patel, Alok [1 ,2 ]
机构
[1] Lulea Univ Technol, Dept Civil Environm, Div Chem Engn, Biochem Proc Engn, SE-97187 Lulea, Sweden
[2] Lulea Univ Technol, Nat Resources Engn, SE-97187 Lulea, Sweden
基金
瑞典研究理事会;
关键词
KNOCKOUT STRATEGIES; BIOLOGY; SEQUENCE; DEGRADATION; PREDICTION; FRAMEWORK; GENOME;
D O I
10.1038/s41540-025-00556-4
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The escalating global environmental crisis demands transformative biotechnological solutions that are both sustainable and scalable. This perspective advocates Data-Driven Synthetic Microbes (DDSM); engineered microorganisms designed through integrating omics, machine learning, and systems biology to tackle challenges like PFAS degradation, greenhouse gas mitigation, and sustainable biomanufacturing. DDSMs offer a rational framework for developing robust microbial systems, reshaping the future of synthetic biology toward environmental resilience and circular bioeconomy.
引用
收藏
页数:9
相关论文
共 111 条
[1]   A deep learning approach to programmable RNA switches [J].
Angenent-Mari, Nicolaas M. ;
Garruss, Alexander S. ;
Soenksen, Luis R. ;
Church, George ;
Collins, James J. .
NATURE COMMUNICATIONS, 2020, 11 (01)
[2]  
[Anonymous], 2022, Curr. Opin. Chem. Eng., V36
[3]  
[Anonymous], 2023, Curr. Opin. Biotechnol., V81
[4]  
[Anonymous], 2022, Chem. Eng. J., V431
[5]  
[Anonymous], 2024, Curr. Opin. Biotechnol., V87
[6]  
[Anonymous], New high throughput cell-selection system to speed medical advances and research
[7]  
[Anonymous], 2015, A New Era in Global Health, DOI DOI 10.1891/9780826190123.AP02
[8]   DeepARG: a deep learning approach for predicting antibiotic resistance genes from metagenomic data [J].
Arango-Argoty, Gustavo ;
Garner, Emily ;
Prudent, Amy ;
Heath, Lenwood S. ;
Vikesland, Peter ;
Zhang, Liqing .
MICROBIOME, 2018, 6
[9]   Multi-Omics Factor Analysis-a framework for unsupervised integration of multi-omics data sets [J].
Argelaguet, Ricard ;
Velten, Britta ;
Arnol, Damien ;
Dietrich, Sascha ;
Zenz, Thorsten ;
Marioni, John C. ;
Buettner, Florian ;
Huber, Wolfgang ;
Stegle, Oliver .
MOLECULAR SYSTEMS BIOLOGY, 2018, 14 (06)
[10]  
Aung Hnin W, 2013, Ind Biotechnol (New Rochelle N Y), V9, P215