BBS-Net: RGB-D Salient Object Detection with a Bifurcated Backbone Strategy Network

被引:300
作者
Fan, Deng-Ping [1 ]
Zhai, Yingjie [2 ]
Borji, Ali [3 ]
Yang, Jufeng [2 ]
Shao, Ling [1 ,4 ]
机构
[1] Incept Inst Artificial Intelligence, Abu Dhabi, U Arab Emirates
[2] Nankai Univ, Tianjin, Peoples R China
[3] HCL Amer, New York, NY USA
[4] Mohamed Bin Zayed Univ Artificial Intelligence, Abu Dhabi, U Arab Emirates
来源
COMPUTER VISION - ECCV 2020, PT XII | 2020年 / 12357卷
关键词
RGB-D saliency detection; Bifurcated backbone strategy; FUSION;
D O I
10.1007/978-3-030-58610-2_17
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multi-level feature fusion is a fundamental topic in computer vision for detecting, segmenting and classifying objects at various scales. When multi-level features meet multi-modal cues, the optimal fusion problem becomes a hot potato. In this paper, we make the first attempt to leverage the inherent multi-modal and multi-level nature of RGB-D salient object detection to develop a novel cascaded refinement network. In particular, we 1) propose a bifurcated backbone strategy (BBS) to split the multi-level features into teacher and student features, and 2) utilize a depth-enhanced module (DEM) to excavate informative parts of depth cues from the channel and spatial views. This fuses RGB and depth modalities in a complementary way. Our simple yet efficient architecture, dubbed Bifurcated Backbone Strategy Network (BBS-Net), is backbone independent and outperforms 18 SOTAs on seven challenging datasets using four metrics.
引用
收藏
页码:275 / 292
页数:18
相关论文
共 78 条
[1]  
Achanta R, 2009, PROC CVPR IEEE, P1597, DOI 10.1109/CVPRW.2009.5206596
[2]   Salient Object Detection: A Benchmark [J].
Borji, Ali ;
Cheng, Ming-Ming ;
Jiang, Huaizu ;
Li, Jia .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2015, 24 (12) :5706-5722
[3]   Three-Stream Attention-Aware Network for RGB-D Salient Object Detection [J].
Chen, Hao ;
Li, Youfu .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2019, 28 (06) :2825-2835
[4]   Progressively Complementarity-aware Fusion Network for RGB-D Salient Object Detection [J].
Chen, Hao ;
Li, Youfu .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :3051-3060
[5]   Multi-modal fusion network with multi-scale multi-path and cross-modal interactions for RGB-D salient object detection [J].
Chen, Hao ;
Li, Youfu ;
Su, Dan .
PATTERN RECOGNITION, 2019, 86 :376-385
[6]   Photographic Image Synthesis with Cascaded Refinement Networks [J].
Chen, Qifeng ;
Koltun, Vladlen .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, :1520-1529
[7]   Reverse Attention-Based Residual Network for Salient Object Detection [J].
Chen, Shuhan ;
Tan, Xiuli ;
Wang, Ben ;
Lu, Huchuan ;
Hu, Xuelong ;
Fu, Yun .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 :3763-3776
[8]   Learning Rotation-Invariant and Fisher Discriminative Convolutional Neural Networks for Object Detection [J].
Cheng, Gong ;
Han, Junwei ;
Zhou, Peicheng ;
Xu, Dong .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2019, 28 (01) :265-278
[9]  
Cheng Y, 2014, IEEE INT CON MULTI
[10]   An In Depth View of Saliency [J].
Ciptadi, Arridhana ;
Hermans, Tucker ;
Rehg, James M. .
PROCEEDINGS OF THE BRITISH MACHINE VISION CONFERENCE 2013, 2013,