A REVIEW OF DEEP-LEARNING TECHNIQUES FOR SAR IMAGE RESTORATION

被引:16
作者
Denis, Loic [1 ]
Dalsasso, Emanuele [2 ]
Tupin, Florence [2 ]
机构
[1] Univ Lyon, Lab Hubert Curien, CNRS, Inst Opt Grad Sch,UMR 5516,UJM St Etienne, F-42023 St Etienne, France
[2] Inst Polytech Paris, Telecom Paris, LTCI, F-91120 Palaiseau, France
来源
2021 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM IGARSS | 2021年
关键词
SAR imaging; speckle; deep learning; MULOG;
D O I
10.1109/IGARSS47720.2021.9555039
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
The speckle phenomenon remains a major hurdle for the analysis of SAR images. The development of speckle reduction methods closely follows methodological progress in the field of image restoration. The advent of deep neural networks has offered new ways to tackle this longstanding problem. Deep learning for speckle reduction is a very active research topic and already shows restoration performances that exceed that of the previous generations of methods based on the concepts of patches, sparsity, wavelet transform or total variation minimization. The objective of this paper is to give an overview of the most recent works and point the main research directions and current challenges of deep learning for SAR image restoration.
引用
收藏
页码:411 / 414
页数:4
相关论文
共 16 条
[1]  
Molini AB, 2020, Arxiv, DOI arXiv:2007.02075
[2]  
Chierchia G, 2017, INT GEOSCI REMOTE SE, P5438, DOI 10.1109/IGARSS.2017.8128234
[3]   Nonlocal CNN SAR Image Despeckling [J].
Cozzolino, Davide ;
Verdoliva, Luisa ;
Scarpa, Giuseppe ;
Poggi, Giovanni .
REMOTE SENSING, 2020, 12 (06)
[4]  
Dalsasso E, 2021, Arxiv, DOI arXiv:2006.15037
[5]  
Dalsasso E, 2021, EUSAR PROC, P1233
[6]   SAR Image Despeckling by Deep Neural Networks: from a Pre-Trained Model to an End-to-End Training Strategy [J].
Dalsasso, Emanuele ;
Yang, Xiangli ;
Denis, Loic ;
Tupin, Florence ;
Yang, Wen .
REMOTE SENSING, 2020, 12 (16)
[7]  
Deledalle CA, 2018, INT GEOSCI REMOTE SE, P5816, DOI 10.1109/IGARSS.2018.8518346
[8]   MuLoG, or How to Apply Gaussian Denoisers to Multi-Channel SAR Speckle Reduction? [J].
Deledalle, Charles-Alban ;
Denis, Loic ;
Tabti, Sonia ;
Tupin, Florence .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2017, 26 (09) :4389-4403
[9]  
Denis L, 2019, INT GEOSCI REMOTE SE, P5113, DOI [10.1109/igarss.2019.8898473, 10.1109/IGARSS.2019.8898473]
[10]  
Fracastoro G, 2021, Arxiv, DOI arXiv:2012.05508