Flat Gain Antenna with 3D Printed Metastructure for 5G Applications

被引:0
作者
Khandekar, Rohit [1 ]
Sipal, Deepika [1 ]
机构
[1] Delhi Technol Univ, Dept Elect & Commun Engn, Delhi, India
来源
2024 IEEE MICROWAVES, ANTENNAS, AND PROPAGATION CONFERENCE, MAPCON | 2024年
关键词
Gain enhancement; Flat gain; 3D printed structures; Planar Dipole Antenna; 5G; APERTURE-EFFICIENCY;
D O I
10.1109/MAPCON61407.2024.10923502
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this article, A Planar Dipole Antenna (PDA) is proposed with a flat gain of 11 dBi over the bandwidth of 4.6 GHz. The PDA antenna is operating from 22 GHz to 26.6 GHz. A 3D printable Poly Lactic Acid (PLA) material is used as 3D structure for gain enhancement by a little more than 5dBi and to tilt the main beam from end-fire to +21 degrees. The dimensions of 3D Structure is 6x4x3 mm(3) and height of substrate is 0.254 mm. The maximum gain achieved is 11.45 dBi and minimum gain is 11.07 dBi. The gain variance is reduced from 3 dB to 0.45 dB after incorporating 3D printed Metastructure to PDA. With the appropriate gain the proposed antenna is suitable for 5G communication with a compact profile of 30x33x3.254 mm3 only.
引用
收藏
页数:4
相关论文
共 17 条
[1]   Circularly Polarized Ka-Band High-Gain Antenna Using Printed Ridge Gap Waveguide and 3-D-Printing Technology [J].
Al-Alem, Yazan ;
Sifat, Syed M. ;
Antar, Yahia M. M. ;
Kishk, Ahmed A. .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2023, 71 (09) :7644-7649
[2]   Millimeter-wave planar antenna array augmented with a low-cost 3D printed dielectric polarizer for sensing and internet of things (IoT) applications [J].
Al-Alem, Yazan ;
Sifat, Syed M. M. ;
Antar, Yahia M. M. ;
Kishk, Ahmed A. A. .
SCIENTIFIC REPORTS, 2023, 13 (01)
[3]   High-gain wideband all-dielectric digital metasurface reflectarray antenna for millimeter-wave applications [J].
Bansal, Shivam ;
Singh, Amit Kumar ;
Bashir, Gazali .
MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2024, 66 (01)
[4]   Dielectric Characterization of Polylactic Acid Substrate in the Frequency Band 0.5-67 GHz [J].
Boussatour, G. ;
Cresson, P. -Y. ;
Genestie, B. ;
Joly, N. ;
Lasri, T. .
IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2018, 28 (05) :374-376
[5]  
Chen XD, 2004, PHYS REV E, V70, DOI 10.1103/PhysRevE.70.016608
[6]   Series-Fed Integrated Lens Antenna for High Gain in Millimeter-Wave Band [J].
Cho, Hyunyoung ;
Lee, Ji-Hoon ;
Kim, Sol ;
Yu, Jong-Won ;
Ahn, Byungkuon .
IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2024, 23 (05) :1578-1582
[7]   An Additive 3D-Printed Hemispherical Lens With Flower-Shaped Stub Slot Ultra-Wideband Antenna for High-Gain Radiation [J].
Chudpooti, Nonchanutt ;
Sangpet, Patchadaporn ;
Pechrkool, Tanaporn ;
Duangrit, Nattapong ;
Thaiwirot, Wanwisa ;
Akkaraekthalin, Prayoot ;
Somjit, Nutapong .
IEEE ACCESS, 2023, 11 :91225-91233
[8]   Flat Gain Broadband Metasurface Antennas [J].
Faenzi, Marco ;
Gonzalez-Ovejero, David ;
Maci, Stefano .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2021, 69 (04) :1942-1951
[9]  
Khandekar Rohit, 2022, Gain enhanced mm-wave dipole patch antenna with an end-fire radiation for 5g applications, P741
[10]   3-D Printed High-Gain Wideband Waveguide Fed Horn Antenna Arrays for Millimeter-Wave Applications [J].
Li, Yujian ;
Ge, Lei ;
Wang, Junhong ;
Da, Shan ;
Cao, Di ;
Wang, Jingxue ;
Liu, Yang .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2019, 67 (05) :2868-2877