Mortality predicting models for patients with infective endocarditis: a machine learning approach

被引:0
作者
Yang, Zi-yang [2 ]
Qi, Wang [4 ]
Liu, Xingyan [5 ]
Li, Haolin [5 ]
Wang, Shouhong [1 ]
Yu, Danqing [3 ,6 ]
Wei, Xuebiao [1 ]
机构
[1] Southern Med Univ, Guangdong Prov Peoples Hosp, Guangdong Acad Med Sci, Guangdong Prov Geriatr Inst,Dept Geriatr Intens Me, 106 Zhongshan Er Rd, Guangzhou 510100, Peoples R China
[2] Southern Med Univ, Guangdong Prov Peoples Hosp, Guangdong Prov Geriatr Inst, Guangdong Acad Med Sci,Dept Geriatr Cardiovasc, Guangzhou, Peoples R China
[3] Southern Med Univ, Guangdong Prov Peoples Hosp, Guangdong Cardiovasc Inst, Guangdong Acad Med Sci,Dept Cardiol, Guangzhou, Peoples R China
[4] Chinese Acad Med Sci & Peking Union Med Coll, Fuwai Hosp, Natl Clin Res Ctr Cardiovasc Dis, Natl Ctr Cardiovasc Dis,Dept Cardiol, Beijing, Peoples R China
[5] Univ North Carolina, Dept Biostat, Chaple Hill, NC USA
[6] Southern Med Univ, Guangdong Prov Peoples Hosp, Guangdong Acad Med Sci, Dept Cardiovasc,Guangdong Cardiovasc Inst, 106 Zhongshan Er Rd, Guangzhou 510100, Peoples R China
关键词
Model prediction; Infective endocarditis; Machine learning; CARDIAC-SURGERY;
D O I
10.1186/s12911-025-03025-4
中图分类号
R-058 [];
学科分类号
摘要
BackgroundInfective endocarditis (IE) is a fatal cardiovascular disease with varied clinical manifestations but rapid progression. A series of existing risk models helped identify IE patients with high risk, but the imperfect predictive performance and limited application called for better predictive systems.MethodsThe single-centered, retrospective observational study applied four machine learning methods for predictive model construction: LASSO logistic regression, random forest (RF), support vector machine (SVM), and k-nearest neighbors (KNN). A 10-fold cross-validated area under the receiver operating characteristic curve (AUC-ROC) was used for performance evaluation.ResultsA total of 1705 patients with IE were enrolled in the study, with 119 in-hospital deaths and 178 deaths after 6-month follow-up. RF achieved the highest AUC-ROCs for in-hospital and six-month mortality prediction (in-hospital: 0.83, 6-month: 0.85). RF was also applied to assess variable importance. The following variables were selected by RF as top important predictors for both in-hospital and six-month mortality prediction: total bilirubin, N-terminal pro-B-type natriuretic peptide, albumin, diastolic blood pressure, fasting blood glucose, uric acid, and age.ConclusionsA risk model with machine learning approach was integrated in purpose of prognosis prediction in IE patients, helping rapid risk stratification and in-time management clinically.Clinical trial numberNot applicable.
引用
收藏
页数:9
相关论文
共 40 条
[1]   Staphylococcus aureus bacteraemia and endocarditis - epidemiology and outcome: a review [J].
Asgeirsson, Hilmir ;
Thalme, Anders ;
Weiland, Ola .
INFECTIOUS DISEASES, 2018, 50 (03) :175-192
[2]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[3]   Challenges in Infective Endocarditis [J].
Cahill, Thomas J. ;
Baddour, Larry M. ;
Habib, Gilbert ;
Hoen, Bruno ;
Salaun, Erwan ;
Pettersson, Gosta B. ;
Schaefers, Hans Joachim ;
Prendergast, Bernard D. .
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2017, 69 (03) :325-344
[4]   Native-Valve Infective Endocarditis [J].
Chambers, Henry F. ;
Bayer, Arnold S. .
NEW ENGLAND JOURNAL OF MEDICINE, 2020, 383 (06) :567-576
[5]  
Costa Mario Augusto Cray da, 2007, Rev Bras Cir Cardiovasc, V22, P192
[6]  
Delgado V, 2023, EUR HEART J, V44, P3948, DOI 10.1093/eurheartj/ehad193
[7]  
Dhanka S, 2021, 2021 IEEE 2 INT C EL, P1, DOI [10.1109/icepes52894.2021.9699506, DOI 10.1109/ICEPES52894.2021.9699506]
[8]  
Dhanka S, 2023, IEEE EUROCON 2023, P147, DOI [10.1109/eurocon56442.2023.10199080, DOI 10.1109/EUROCON56442.2023.10199080]
[9]   Comprehensive analysis of supervised algorithms for coronary artery heart disease detection [J].
Dhanka, Sanjay ;
Bhardwaj, Vibhor Kumar ;
Maini, Surita .
EXPERT SYSTEMS, 2023, 40 (07)
[10]   Impact of perioperative liver dysfunction on in-hospital mortality and long-term survival in infective endocarditis patients [J].
Diab, M. ;
Sponholz, C. ;
von Loeffelholz, C. ;
Scheffel, P. ;
Bauer, M. ;
Kortgen, A. ;
Lehmann, T. ;
Faerber, G. ;
Pletz, M. W. ;
Doenst, T. .
INFECTION, 2017, 45 (06) :857-866