A Multifunctional Polymer Binder for High-Performance Si/C Anodes in Lithium-Ion Batteries

被引:0
作者
Deng, Zhiyu [1 ]
Xu, Jing [1 ]
Shi, Chenyang [1 ]
Lai, Junquan [1 ]
Dong, Heng [1 ]
Wang, Mengran [1 ,2 ,4 ,5 ]
Hong, Bo [1 ,2 ,3 ,4 ]
Lai, Yanqing [1 ,2 ,3 ,4 ]
机构
[1] Cent South Univ, Sch Met & Environm, Changsha 410083, Hunan, Peoples R China
[2] Minist Educ, Engn Res Ctr Adv Battery Mat, Changsha 410083, Hunan, Peoples R China
[3] Hunan Prov Key Lab Nonferrous Value Added Met, Changsha 410083, Hunan, Peoples R China
[4] Natl Energy Met Resources & New Mat Key Lab, Changsha 410083, Hunan, Peoples R China
[5] Natl Engn Res Ctr Adv Energy Storage Mat, Changsha 410083, Hunan, Peoples R China
关键词
silicon-carbon anodes; polyacrylic acid; multifunctionalbinder; lithium-ion batteries; cross-linking; polymer; SILICON ANODES; RATIONAL DESIGN; COMPOSITE; NETWORK;
D O I
10.1021/acsapm.5c01436
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Conventional poly(acrylic acid) binders are unable to satisfy the rigorous criteria for silicon anodes, which impedes the progress of high-energy-density lithium-ion batteries. Therefore, it is essential to design a binder capable of withstanding the volumetric impact and low electrical conductivity of Si-based anodes. In this study, a multifunctional binder, named the PODA binder, with a 3D polymer network structure was proposed to achieve enhanced mechanical properties and improved electronic and ionic conductivity based on amide bonds, phenyl ether bonds, and pi-pi interactions, effectively preserving the completeness of the Si anodes. The phenyl ether group facilitated rapid Li+ and electron transport, establishing efficient conduction pathways within the binder. The PODA binder successfully maintained the structural integrity and mitigated the volumetric expansion of the silicon-carbon anode electrodes. At 2 A g- 1, enabled by the binder, the Si-C anode achieved superior specific charge capacity retention of approximate to 65% (1303.1 to 850.1 mAh g- 1) after 300 cycles. In comparison, the control Si-C anode retained only approximate to 8.3% (1207.9 to 100.1 mAh g- 1) after 200 cycles. The strategy represents a pioneering method to construct high-performance and high-mass-loading Si-based electrodes for high-energy-density Li-ion batteries.
引用
收藏
页码:9131 / 9141
页数:11
相关论文
共 56 条
[21]   Rechargeable Sodium Solid-State Battery Enabled by In Situ Formed Na-K Interphase [J].
Ni, Qing ;
Xiong, Yongnan ;
Sun, Zheng ;
Sun, Chen ;
Li, Yang ;
Yuan, Xuanyi ;
Jin, Haibo ;
Zhao, Yongjie .
ADVANCED ENERGY MATERIALS, 2023, 13 (17)
[22]   Mechanically Robust Bismuth-Embedded Carbon Microspheres for Ultrafast Charging and Ultrastable Sodium-Ion Batteries [J].
Pan, Jianhai ;
Sun, Zhefei ;
Wu, Xiaoyu ;
Liu, Tongchao ;
Xing, Yurui ;
Chen, Jiawei ;
Xue, Zhichen ;
Tang, Dafu ;
Dong, Xiaoli ;
Zhang, Hongti ;
Liu, Haodong ;
Wei, Qiulong ;
Peng, Dong-Liang ;
Amine, Khalil ;
Zhang, Qiaobao .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2025, 147 (04) :3047-3061
[23]   Role of Polyacrylic Acid (PAA) Binder on the Solid Electrolyte Interphase in Silicon Anodes [J].
Parikh, Pritesh ;
Sina, Mahsa ;
Banerjee, Abhik ;
Wang, Xuefeng ;
D'Souza, Macwin Savio ;
Doux, Jean-Marie ;
Wu, Erik A. ;
Trieu, Osman Y. ;
Gong, Yongbai ;
Zhou, Qan ;
Snyder, Kent ;
Meng, Ying Shirley .
CHEMISTRY OF MATERIALS, 2019, 31 (07) :2535-2544
[24]   Progress of 3D network binders in silicon anodes for lithium ion batteries [J].
Preman, Anjali N. ;
Lee, Hyocheol ;
Yoo, Jungwoo ;
Kim, Il Tae ;
Saito, Tomonori ;
Ahn, Suk-kyun .
JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (48) :25548-25570
[25]   Over-Potential Tailored Thin and Dense Lithium Carbonate Growth in Solid Electrolyte Interphase for Advanced Lithium Ion Batteries [J].
Qin, Nan ;
Jin, Liming ;
Lu, Yanyan ;
Wu, Qiang ;
Zheng, Junsheng ;
Zhang, Cunman ;
Chen, Zonghai ;
Zheng, Jim P. .
ADVANCED ENERGY MATERIALS, 2022, 12 (15)
[26]   Mussel-Inspired Adhesive Binders for High-Performance Silicon Nanoparticle Anodes in Lithium-Ion Batteries [J].
Ryou, Myung-Hyun ;
Kim, Jangbae ;
Lee, Inhwa ;
Kim, Sunjin ;
Jeong, You Kyeong ;
Hong, Seonki ;
Ryu, Ji Hyun ;
Kim, Taek-Soo ;
Park, Jung-Ki ;
Lee, Haeshin ;
Choi, Jang Wook .
ADVANCED MATERIALS, 2013, 25 (11) :1571-1576
[27]   An elastic cross-linked polymeric binder for high-performance silicon/ graphite composite anodes in lithium-ion batteries [J].
Son, Ho-Jun ;
Reddy, B. S. ;
Na, Ho-Jun ;
Kim, Joo-Hyun ;
Ahn, Hyo-Jun ;
Ahn, Jou-Hyeon ;
Cho, Gyu-Bong ;
Cho, Kwon-Koo .
JOURNAL OF ALLOYS AND COMPOUNDS, 2025, 1010
[28]   Interpenetrated Gel Polymer Binder for High-Performance Silicon Anodes in Lithium-ion Batteries [J].
Song, Jiangxuan ;
Zhou, Mingjiong ;
Yi, Ran ;
Xu, Terrence ;
Gordin, Mikhail L. ;
Tang, Duihai ;
Yu, Zhaoxin ;
Regula, Michael ;
Wang, Donghai .
ADVANCED FUNCTIONAL MATERIALS, 2014, 24 (37) :5904-5910
[29]   Intermolecular chemistry for designing functional binders in silicon/ carbon composite anodes [J].
Song, Zhibo ;
Wang, Lu ;
Yang, Kai ;
Gong, Yi ;
Yang, Luyi ;
Liu, Xinhua ;
Pan, Feng .
MATERIALS TODAY ENERGY, 2022, 30
[30]   Improved adhesion of cross-linked binder and SiO2-coating enhances structural and cyclic stability of silicon electrodes for lithium-ion batteries [J].
Sun, Sen ;
He, Donglin ;
Li, Ping ;
Liu, Ying ;
Wan, Qi ;
Tan, Qiwei ;
Liu, Zhiwei ;
An, Fuqiang ;
Gong, Gaoxiang ;
Qu, Xuanhui .
JOURNAL OF POWER SOURCES, 2020, 454