A Multifunctional Polymer Binder for High-Performance Si/C Anodes in Lithium-Ion Batteries

被引:0
作者
Deng, Zhiyu [1 ]
Xu, Jing [1 ]
Shi, Chenyang [1 ]
Lai, Junquan [1 ]
Dong, Heng [1 ]
Wang, Mengran [1 ,2 ,4 ,5 ]
Hong, Bo [1 ,2 ,3 ,4 ]
Lai, Yanqing [1 ,2 ,3 ,4 ]
机构
[1] Cent South Univ, Sch Met & Environm, Changsha 410083, Hunan, Peoples R China
[2] Minist Educ, Engn Res Ctr Adv Battery Mat, Changsha 410083, Hunan, Peoples R China
[3] Hunan Prov Key Lab Nonferrous Value Added Met, Changsha 410083, Hunan, Peoples R China
[4] Natl Energy Met Resources & New Mat Key Lab, Changsha 410083, Hunan, Peoples R China
[5] Natl Engn Res Ctr Adv Energy Storage Mat, Changsha 410083, Hunan, Peoples R China
关键词
silicon-carbon anodes; polyacrylic acid; multifunctionalbinder; lithium-ion batteries; cross-linking; polymer; SILICON ANODES; RATIONAL DESIGN; COMPOSITE; NETWORK;
D O I
10.1021/acsapm.5c01436
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Conventional poly(acrylic acid) binders are unable to satisfy the rigorous criteria for silicon anodes, which impedes the progress of high-energy-density lithium-ion batteries. Therefore, it is essential to design a binder capable of withstanding the volumetric impact and low electrical conductivity of Si-based anodes. In this study, a multifunctional binder, named the PODA binder, with a 3D polymer network structure was proposed to achieve enhanced mechanical properties and improved electronic and ionic conductivity based on amide bonds, phenyl ether bonds, and pi-pi interactions, effectively preserving the completeness of the Si anodes. The phenyl ether group facilitated rapid Li+ and electron transport, establishing efficient conduction pathways within the binder. The PODA binder successfully maintained the structural integrity and mitigated the volumetric expansion of the silicon-carbon anode electrodes. At 2 A g- 1, enabled by the binder, the Si-C anode achieved superior specific charge capacity retention of approximate to 65% (1303.1 to 850.1 mAh g- 1) after 300 cycles. In comparison, the control Si-C anode retained only approximate to 8.3% (1207.9 to 100.1 mAh g- 1) after 200 cycles. The strategy represents a pioneering method to construct high-performance and high-mass-loading Si-based electrodes for high-energy-density Li-ion batteries.
引用
收藏
页码:9131 / 9141
页数:11
相关论文
共 56 条
[1]   A review on energy chemistry of fast-charging anodes [J].
Cai, Wenlong ;
Yao, Yu-Xing ;
Zhu, Gao-Long ;
Yan, Chong ;
Jiang, Li-Li ;
He, Chuanxin ;
Huang, Jia-Qi ;
Zhang, Qiang .
CHEMICAL SOCIETY REVIEWS, 2020, 49 (12) :3806-3833
[2]   Rational Design of a Multifunctional Binder for High-Capacity Silicon-Based Anodes [J].
Cao, Peng-Fei ;
Yang, Guang ;
Li, Bingrui ;
Zhang, Yiman ;
Zhao, Sheng ;
Zhang, Shuo ;
Erwin, Andrew ;
Zhang, Zhengcheng ;
Sokolov, Alexei P. ;
Nanda, Jagjit ;
Saito, Tomonori .
ACS ENERGY LETTERS, 2019, 4 (05) :1171-1180
[3]   Effect of Binder Architecture on the Performance of Silicon/Graphite Composite Anodes for Lithium Ion Batteries [J].
Cao, Peng-Fei ;
Naguib, Michael ;
Du, Zhijia ;
Stacy, Eric ;
Li, Bingrui ;
Hong, Tao ;
Xing, Kunyue ;
Voylov, Dmitry N. ;
Li, Jianlin ;
Wood, David L., III ;
Sokolov, Alexei P. ;
Nanda, Jagjit ;
Saito, Tomonori .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (04) :3470-3478
[4]   A mechanically robust self-healing binder for silicon anode in lithium ion batteries [J].
Chen, Hao ;
Wu, Zhenzhen ;
Su, Zhong ;
Chen, Su ;
Yan, Cheng ;
Al-Mamun, Mohammad ;
Tang, Yongbing ;
Zhang, Shanqing .
NANO ENERGY, 2021, 81
[5]   Exploring Chemical, Mechanical, and Electrical Functionalities of Binders for Advanced Energy-Storage Devices [J].
Chen, Hao ;
Ling, Min ;
Hencz, Luke ;
Ling, Han Yeu ;
Li, Gaoran ;
Lin, Zhan ;
Liu, Gao ;
Zhang, Shanqing .
CHEMICAL REVIEWS, 2018, 118 (18) :8936-8982
[6]   Dynamic hydrogen bond cross-linking binder with self-healing chemistry enables high-performance silicon anode in lithium-ion batteries [J].
Chen, Jiahao ;
Li, Yaxin ;
Wu, Xinyuan ;
Min, Huihua ;
Wang, Jin ;
Liu, Xiaomin ;
Yang, Hui .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2024, 657 :893-902
[7]   Promise and reality of post-lithium-ion batteries with high energy densities [J].
Choi, Jang Wook ;
Aurbach, Doron .
NATURE REVIEWS MATERIALS, 2016, 1 (04)
[8]   Manipulating charge-transfer kinetics and a flow-domain LiF-rich interphase to enable high-performance microsized silicon-silver-carbon composite anodes for solid-state batteries [J].
Han, Xiang ;
Gu, Lanhui ;
Sun, Zhefei ;
Chen, Minfeng ;
Zhang, Yinggan ;
Luo, Linshan ;
Xu, Min ;
Chen, Songyan ;
Liu, Haodong ;
Wan, Jiayu ;
He, Yan-Bing ;
Chen, Jizhang ;
Zhang, Qiaobao .
ENERGY & ENVIRONMENTAL SCIENCE, 2023, 16 (11) :5395-5408
[9]   Multiscale Buffering Engineering in Silicon-Carbon Anode for Ultrastable Li-Ion Storage [J].
Hou, Guolin ;
Cheng, Benli ;
Yang, Yijun ;
Du, Yu ;
Zhang, Yihui ;
Li, Baoqiang ;
He, Jiaping ;
Zhou, Yunzhan ;
Yi, Ding ;
Zhao, Nana ;
Bando, Yoshio ;
Golberg, Dmitri ;
Yao, Jiannian ;
Wang, Xi ;
Yuan, Fangli .
ACS NANO, 2019, 13 (09) :10179-10190
[10]   Double-wrapping design of gradient energy-dissipative binder for enhanced performances of SiC anodes [J].
Hu, Xinmeng ;
Zhang, Yinhang ;
Geng, Wenhui ;
Nie, Huagui ;
Xiao, Kuikui ;
Cai, Dong ;
Yang, Shuo ;
Yang, Zhi .
JOURNAL OF POWER SOURCES, 2025, 625