Generative models for inverse design of inorganic solid materials

被引:28
作者
Chen, Litao [1 ]
Zhang, Wentao [1 ]
Nie, Zhiwei [1 ]
Li, Shunning [1 ]
Pan, Feng [1 ]
机构
[1] Peking Univ, Shenzhen Grad Sch, Sch Adv Mat, 2199 Lishui Rd, Shenzhen 518055, Peoples R China
来源
JOURNAL OF MATERIALS INFORMATICS | 2021年 / 1卷 / 01期
基金
国家重点研发计划;
关键词
Inverse design; inorganic solid materials; machine learning; generative model; ENCODING CRYSTAL-STRUCTURE; CUBIC LI-ARGYRODITES; MATERIALS DISCOVERY; MACHINE; REPRESENTATION; PREDICTION; ALGORITHM; SMILES; ENERGY;
D O I
10.20517/jmi.2021.07
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Overwhelming evidence has been accumulating that materials informatics can provide a novel solution for materials discovery. While the conventional approach to innovation relies mainly on experimentation, the generative models stemming from the field of machine learning can realize the long-held dream of inverse design, where properties are mapped to the chemical structures. In this review, we introduce the general aspects of inverse materials design and provide a brief overview of two generative models, variational autoencoder and generative adversarial network, which can be utilized to generate and optimize inorganic solid materials according to their properties. Reversible representation schemes for generative models are compared between molecular and crystalline structures, and challenges in regard to the latter are also discussed. Finally, we summarize the recent application of generative models in the exploration of chemical space with compositional and configurational degrees of freedom, and potential future directions are speculatively outlined.
引用
收藏
页数:15
相关论文
共 101 条
[61]   Combinatorial screening for new materials in unconstrained composition space with machine learning [J].
Meredig, B. ;
Agrawal, A. ;
Kirklin, S. ;
Saal, J. E. ;
Doak, J. W. ;
Thompson, A. ;
Zhang, K. ;
Choudhary, A. ;
Wolverton, C. .
PHYSICAL REVIEW B, 2014, 89 (09)
[62]  
Mirza M, 2014, Arxiv, DOI [arXiv:1411.1784, DOI 10.48550/ARXIV.1411.1784]
[63]  
Nguyen P, 2018, Arxiv, DOI arXiv:1811.06060
[64]   Construction and Application of Materials Knowledge Graph Based on Author Disambiguation: Revisiting the Evolution of LiFePO4 [J].
Nie, Zhiwei ;
Liu, Yuanji ;
Yang, Luyi ;
Li, Shunning ;
Pan, Feng .
ADVANCED ENERGY MATERIALS, 2021, 11 (16)
[65]   Machine-enabled inverse design of inorganic solid materials: promises and challenges [J].
Noh, Juhwan ;
Gu, Geun Ho ;
Kim, Sungwon ;
Jung, Yousung .
CHEMICAL SCIENCE, 2020, 11 (19) :4871-4881
[66]   Inverse Design of Solid-State Materials via a Continuous Representation [J].
Noh, Juhwan ;
Kim, Jaehoon ;
Stein, Helge S. ;
Sanchez-Lengeling, Benjamin ;
Gregoire, John M. ;
Aspuru-Guzik, Alan ;
Jung, Yousung .
MATTER, 2019, 1 (05) :1370-1384
[67]   Unveiling new stable manganese based photoanode materials via theoretical high-throughput screening and experiments [J].
Noh, Juhwan ;
Kim, Sungwon ;
Gu, Geun Ho ;
Shinde, Aniketa ;
Zhou, Lan ;
Gregoire, John M. ;
Jung, Yousung .
CHEMICAL COMMUNICATIONS, 2019, 55 (89) :13418-13421
[68]  
Nouira A, 2019, Arxiv, DOI [arXiv:1810.11203, DOI 10.48550/ARXIV.1810.11203]
[69]   Molecular de-novo design through deep reinforcement learning [J].
Olivecrona, Marcus ;
Blaschke, Thomas ;
Engkvist, Ola ;
Chen, Hongming .
JOURNAL OF CHEMINFORMATICS, 2017, 9
[70]  
Kingma DP, 2014, Arxiv, DOI [arXiv:1312.6114, DOI 10.48550/ARXIV.1312.6114, 10.48550/arXiv.1312.6114]