Generative models for inverse design of inorganic solid materials

被引:28
作者
Chen, Litao [1 ]
Zhang, Wentao [1 ]
Nie, Zhiwei [1 ]
Li, Shunning [1 ]
Pan, Feng [1 ]
机构
[1] Peking Univ, Shenzhen Grad Sch, Sch Adv Mat, 2199 Lishui Rd, Shenzhen 518055, Peoples R China
来源
JOURNAL OF MATERIALS INFORMATICS | 2021年 / 1卷 / 01期
基金
国家重点研发计划;
关键词
Inverse design; inorganic solid materials; machine learning; generative model; ENCODING CRYSTAL-STRUCTURE; CUBIC LI-ARGYRODITES; MATERIALS DISCOVERY; MACHINE; REPRESENTATION; PREDICTION; ALGORITHM; SMILES; ENERGY;
D O I
10.20517/jmi.2021.07
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Overwhelming evidence has been accumulating that materials informatics can provide a novel solution for materials discovery. While the conventional approach to innovation relies mainly on experimentation, the generative models stemming from the field of machine learning can realize the long-held dream of inverse design, where properties are mapped to the chemical structures. In this review, we introduce the general aspects of inverse materials design and provide a brief overview of two generative models, variational autoencoder and generative adversarial network, which can be utilized to generate and optimize inorganic solid materials according to their properties. Reversible representation schemes for generative models are compared between molecular and crystalline structures, and challenges in regard to the latter are also discussed. Finally, we summarize the recent application of generative models in the exploration of chemical space with compositional and configurational degrees of freedom, and potential future directions are speculatively outlined.
引用
收藏
页数:15
相关论文
共 101 条
[41]   Molecular graph convolutions: moving beyond fingerprints [J].
Kearnes, Steven ;
McCloskey, Kevin ;
Berndl, Marc ;
Pande, Vijay ;
Riley, Patrick .
JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2016, 30 (08) :595-608
[42]   Combining Machine Learning and Computational Chemistry for Predictive Insights Into Chemical Systems [J].
Keith, John A. ;
Vassilev-Galindo, Valentin ;
Cheng, Bingqing ;
Chmiela, Stefan ;
Gastegger, Michael ;
Mueller, Klaus-Robert ;
Tkatchenko, Alexandre .
CHEMICAL REVIEWS, 2021, 121 (16) :9816-9872
[43]   Inverse design of porous materials using artificial neural networks [J].
Kim, Baekjun ;
Lee, Sangwon ;
Kim, Jihan .
SCIENCE ADVANCES, 2020, 6 (01)
[44]   Machine Learning Assisted Predictions of Intrinsic Dielectric Breakdown Strength of ABX3 Perovskites [J].
Kim, Chiho ;
Pilania, Ghanshyam ;
Ramprasad, Rampi .
JOURNAL OF PHYSICAL CHEMISTRY C, 2016, 120 (27) :14575-14580
[45]   Generative Adversarial Networks for Crystal Structure Prediction [J].
Kim, Sungwon ;
Noh, Juhwan ;
Gu, Geun Ho ;
Aspuru-Guzik, Alan ;
Jung, Yousung .
ACS CENTRAL SCIENCE, 2020, 6 (08) :1412-1420
[46]   The Open Quantum Materials Database (OQMD): assessing the accuracy of DFT formation energies [J].
Kirklin, Scott ;
Saal, James E. ;
Meredig, Bryce ;
Thompson, Alex ;
Doak, Jeff W. ;
Aykol, Muratahan ;
Ruehl, Stephan ;
Wolverton, Chris .
NPJ COMPUTATIONAL MATERIALS, 2015, 1
[47]  
Kodali N, 2017, Arxiv, DOI [arXiv:1705.07215, DOI 10.48550/ARXIV.1705.07215]
[48]  
Kumar K, 2019, Arxiv, DOI arXiv:1910.06711
[49]   Dual Adversarial Inference for Text-to-Image Synthesis [J].
Lao, Qicheng ;
Havaei, Mohammad ;
Pesaranghader, Ahmad ;
Dutil, Francis ;
Di Jorio, Lisa ;
Fevens, Thomas .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :7566-7575
[50]   An efficient genetic algorithm for structure prediction at the nanoscale [J].
Lazauskas, Tomas ;
Sokol, Alexey A. ;
Woodley, Scott M. .
NANOSCALE, 2017, 9 (11) :3850-3864